BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30623811)

  • 1. Extracting lipid vesicles from plasma membranes via self-assembly of clathrin-inspired scaffolding nanoparticles.
    Li Y; Zhang X; Lin J; Li R; Yue T
    Colloids Surf B Biointerfaces; 2019 Apr; 176():239-248. PubMed ID: 30623811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of the influence of nanoparticle shape on clathrin-mediated endocytosis.
    Li Y; Zhang M; Zhang Y; Niu X; Liu Z; Yue T; Zhang W
    J Mater Chem B; 2023 Jul; 11(27):6319-6334. PubMed ID: 37232123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective membrane wrapping on differently sized nanoparticles regulated by clathrin assembly: A computational model.
    Li Y; Zhang M; Niu X; Yue T
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112467. PubMed ID: 35366575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis.
    Banerjee A; Berezhkovskii A; Nossal R
    Phys Biol; 2016 Feb; 13(1):016005. PubMed ID: 26871680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design principles for robust vesiculation in clathrin-mediated endocytosis.
    Hassinger JE; Oster G; Drubin DG; Rangamani P
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):E1118-E1127. PubMed ID: 28126722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional and Rotational Motions of Nanoparticles on Plasma Membranes as Local Probes of Surface Tension Propagation.
    Li S; Yan Z; Luo Z; Xu Y; Huang F; Hu G; Zhang X; Yue T
    Langmuir; 2019 Apr; 35(15):5333-5341. PubMed ID: 30908057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.
    Phuc LTM; Taniguchi A
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assaying the Contribution of Membrane Tension to Clathrin-Mediated Endocytosis.
    Boulant S
    Methods Mol Biol; 2018; 1847():37-50. PubMed ID: 30129008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption.
    Li Q; Xia D; Tao J; Shen A; He Y; Gan Y; Wang C
    J Pharm Sci; 2017 Oct; 106(10):3120-3130. PubMed ID: 28559042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocytic proteins drive vesicle growth via instability in high membrane tension environment.
    Walani N; Torres J; Agrawal A
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):E1423-32. PubMed ID: 25775509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane monolayer protrusion mediates a new nanoparticle wrapping pathway.
    Yue T; Zhang X; Huang F
    Soft Matter; 2014 Mar; 10(12):2024-34. PubMed ID: 24652443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry.
    Agudo-Canalejo J; Lipowsky R
    ACS Nano; 2015; 9(4):3704-20. PubMed ID: 25840649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic.
    He K; Marsland R; Upadhyayula S; Song E; Dang S; Capraro BR; Wang W; Skillern W; Gaudin R; Ma M; Kirchhausen T
    Nature; 2017 Dec; 552(7685):410-414. PubMed ID: 29236694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation of nanoparticles regulated by mechanical properties of nanoparticle-membrane system.
    Tang H; Ye H; Zhang H; Zheng Y
    Nanotechnology; 2018 Oct; 29(40):405102. PubMed ID: 30020084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.
    Chakraborty A; Jana NR
    J Phys Chem Lett; 2015 Sep; 6(18):3688-97. PubMed ID: 26722743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Morphology of Self-Assembled Lipid-Based Nanoparticles Affects Their Uptake by Cancer Cells.
    Aresh W; Liu Y; Sine J; Thayer D; Puri A; Huang Y; Wang Y; Nieh MP
    J Biomed Nanotechnol; 2016 Oct; 12(10):1852-63. PubMed ID: 29359898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane.
    Liu Y; Li S; Liu X; Sun H; Yue T; Zhang X; Yan B; Cao D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):23822-23831. PubMed ID: 31250627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spontaneous penetration mechanism of patterned nanoparticles across a biomembrane.
    Li Y; Zhang X; Cao D
    Soft Matter; 2014 Sep; 10(35):6844-56. PubMed ID: 25082334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin.
    Takei K; Mundigl O; Daniell L; De Camilli P
    J Cell Biol; 1996 Jun; 133(6):1237-50. PubMed ID: 8682861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-resolution imaging-based single particle tracking reveals dynamics of nanoparticle internalization by live cells.
    Li Y; Shang L; Nienhaus GU
    Nanoscale; 2016 Apr; 8(14):7423-9. PubMed ID: 27001905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.