BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30623811)

  • 21. Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis.
    Lundmark R; Carlsson SR
    Semin Cell Dev Biol; 2010 Jun; 21(4):363-70. PubMed ID: 19931628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How a lipid bilayer membrane responds to an oscillating nanoparticle: Promoted membrane undulation and directional wave propagation.
    Li S; Yan Z; Huang F; Zhang X; Yue T
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110651. PubMed ID: 31784121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Partitioning of nanoscale particles on a heterogeneous multicomponent lipid bilayer.
    Yang K; Yang R; Tian X; He K; Filbrun SL; Fang N; Ma Y; Yuan B
    Phys Chem Chem Phys; 2018 Nov; 20(44):28241-28248. PubMed ID: 30398246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.
    Chiang PC; Tanady K; Huang LT; Chao L
    Sci Rep; 2017 Nov; 7(1):15139. PubMed ID: 29123132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Receptor-Mediated Endocytosis of Nanoparticles: Roles of Shapes, Orientations, and Rotations of Nanoparticles.
    Tang H; Zhang H; Ye H; Zheng Y
    J Phys Chem B; 2018 Jan; 122(1):171-180. PubMed ID: 29199830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles.
    Yue T; Zhang X
    ACS Nano; 2012 Apr; 6(4):3196-205. PubMed ID: 22429100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells.
    Baghirov H; Melikishvili S; Mørch Y; Sulheim E; Åslund AKO; Hianik T; de Lange Davies C
    Colloids Surf B Biointerfaces; 2017 Feb; 150():373-383. PubMed ID: 27842930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoparticle-Mediated Mechanical Destruction of Cell Membranes: A Coarse-Grained Molecular Dynamics Study.
    Zhang L; Zhao Y; Wang X
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26665-26673. PubMed ID: 28719184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assembly of clathrin-coated pits onto purified plasma membranes.
    Moore MS; Mahaffey DT; Brodsky FM; Anderson RG
    Science; 1987 May; 236(4801):558-63. PubMed ID: 2883727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes.
    Xiong K; Zhao J; Yang D; Cheng Q; Wang J; Ji H
    Soft Matter; 2017 Jul; 13(26):4644-4652. PubMed ID: 28650048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid bilayer dynamics in plasma and coated vesicle membranes from bovine adrenal cortex. Evidence of two types of coated vesicle involved in the LDL receptor traffic.
    Bomsel M; de Paillerets C; Weintraub H; Alfsen A
    Biochim Biophys Acta; 1986 Jul; 859(1):15-25. PubMed ID: 3087424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational Investigations of the Interaction between the Cell Membrane and Nanoparticles Coated with a Pulmonary Surfactant.
    Bai X; Xu M; Liu S; Hu G
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20368-20376. PubMed ID: 29808987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis.
    Costa Verdera H; Gitz-Francois JJ; Schiffelers RM; Vader P
    J Control Release; 2017 Nov; 266():100-108. PubMed ID: 28919558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rheology and simulation of 2-dimensional clathrin protein network assembly.
    VanDersarl JJ; Mehraeen S; Schoen AP; Heilshorn SC; Spakowitz AJ; Melosh NA
    Soft Matter; 2014 Sep; 10(33):6219-27. PubMed ID: 25012232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations.
    Li Z; Gorfe AA
    Nanoscale; 2015 Jan; 7(2):814-24. PubMed ID: 25438167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells.
    Langston Suen WL; Chau Y
    J Pharm Pharmacol; 2014 Apr; 66(4):564-73. PubMed ID: 24635558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface Reconfiguration of Binary Lipid Vesicles via Electrostatically Induced Nanoparticle Adsorption.
    Aydin F; Dutt M
    J Phys Chem B; 2016 Jul; 120(27):6646-56. PubMed ID: 27340906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Partner-facilitating transmembrane penetration of nanoparticles: a biological test in silico.
    Wang W; Yang R; Zhang F; Yuan B; Yang K; Ma Y
    Nanoscale; 2018 Jun; 10(24):11670-11678. PubMed ID: 29897087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lateral surface engineering of hybrid lipid-BCP vesicles and selective nanoparticle embedding.
    Schulz M; Olubummo A; Bacia K; Binder WH
    Soft Matter; 2014 Feb; 10(6):831-9. PubMed ID: 24837370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane indentation triggers clathrin lattice reorganization and fluidization.
    Cordella N; Lampo TJ; Melosh N; Spakowitz AJ
    Soft Matter; 2015 Jan; 11(3):439-48. PubMed ID: 25412023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.