These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30624001)

  • 21. In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation.
    Kamal MZ; Ahmad S; Molugu TR; Vijayalakshmi A; Deshmukh MV; Sankaranarayanan R; Rao NM
    J Mol Biol; 2011 Oct; 413(3):726-41. PubMed ID: 21925508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions.
    Kübler D; Ingenbosch KN; Bergmann A; Weidmann M; Hoffmann-Jacobsen K
    Eur Biophys J; 2015 Dec; 44(8):655-65. PubMed ID: 26224303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystallographic Investigation of Imidazolium Ionic Liquid Effects on Enzyme Structure.
    Nordwald EM; Plaks JG; Snell JR; Sousa MC; Kaar JL
    Chembiochem; 2015 Nov; 16(17):2456-9. PubMed ID: 26388426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.
    Mohammadi M; Sepehrizadeh Z; Ebrahim-Habibi A; Shahverdi AR; Faramarzi MA; Setayesh N
    Enzyme Microb Technol; 2016 Nov; 93-94():18-28. PubMed ID: 27702479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site-directed mutagenesis: role of lid region for T1 lipase specificity.
    Mohamed RA; Salleh AB; Leow TC; Yahaya NM; Abdul Rahman MB
    Protein Eng Des Sel; 2018 Jun; 31(6):221-229. PubMed ID: 30239965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manipulation of the conformation and enzymatic properties of T1 lipase by site-directed mutagenesis of the protein core.
    Wahab RA; Basri M; Rahman RN; Salleh AB; Rahman MB; Chor LT
    Appl Biochem Biotechnol; 2012 Jun; 167(3):612-20. PubMed ID: 22581079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance.
    Cui J; Zhao Y; Liu R; Zhong C; Jia S
    Sci Rep; 2016 Jun; 6():27928. PubMed ID: 27297609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipase Catalysis in Presence of Nonionic Surfactants.
    Goswami D
    Appl Biochem Biotechnol; 2020 Jun; 191(2):744-762. PubMed ID: 31853875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Casting epPCR (cepPCR): A simple random mutagenesis method to generate high quality mutant libraries.
    Yang J; Ruff AJ; Arlt M; Schwaneberg U
    Biotechnol Bioeng; 2017 Sep; 114(9):1921-1927. PubMed ID: 28464223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conversion of Bacillus thermocatenulatus lipase into an efficient phospholipase with increased activity towards long-chain fatty acyl substrates by directed evolution and rational design.
    Kauffmann I; Schmidt-Dannert C
    Protein Eng; 2001 Nov; 14(11):919-28. PubMed ID: 11742112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different strategies for hyperactivation of lipase biocatalysts.
    Palomo JM; Guisan JM
    Methods Mol Biol; 2012; 861():329-41. PubMed ID: 22426728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution.
    Funke SA; Otte N; Eggert T; Bocola M; Jaeger KE; Thiel W
    Protein Eng Des Sel; 2005 Nov; 18(11):509-14. PubMed ID: 16203748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elucidating sequence and solvent specific design targets to protect and stabilize enzymes for biocatalysis in ionic liquids.
    Sprenger KG; Plaks JG; Kaar JL; Pfaendtner J
    Phys Chem Chem Phys; 2017 Jul; 19(26):17426-17433. PubMed ID: 28650512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CompassR Yields Highly Organic-Solvent-Tolerant Enzymes through Recombination of Compatible Substitutions.
    Cui H; Jaeger KE; Davari MD; Schwaneberg U
    Chemistry; 2021 Feb; 27(8):2789-2797. PubMed ID: 33186477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical treatments for modification and immobilization to improve the solvent-stability of lipase.
    Matsumoto T; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Nov; 35(12):193. PubMed ID: 31773289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure-function relationship of the lipases from Pseudomonas aeruginosa and Bacillus subtilis.
    Misset O; Gerritse G; Jaeger KE; Winkler U; Colson C; Schanck K; Lesuisse E; Dartois V; Blaauw M; Ransac S
    Protein Eng; 1994 Apr; 7(4):523-9. PubMed ID: 8029207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution.
    Akbulut N; Tuzlakoğlu Öztürk M; Pijning T; İşsever Öztürk S; Gümüşel F
    J Biotechnol; 2013 Mar; 164(1):123-9. PubMed ID: 23313890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unraveling the effects of amino acid substitutions enhancing lipase resistance to an ionic liquid: a molecular dynamics study.
    Zhao J; Frauenkron-Machedjou VJ; Fulton A; Zhu L; Davari MD; Jaeger KE; Schwaneberg U; Bocola M
    Phys Chem Chem Phys; 2018 Apr; 20(14):9600-9609. PubMed ID: 29578220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.