BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30624002)

  • 1. Alkylation of Allyl/Alkenyl Sulfones by Deoxygenation of Alkoxyl Radicals.
    Han JB; Guo A; Tang XY
    Chemistry; 2019 Feb; 25(12):2989-2994. PubMed ID: 30624002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkoxyl Radicals Generated under Photoredox Catalysis: A Strategy for anti-Markovnikov Alkoxylation Reactions.
    Barthelemy AL; Tuccio B; Magnier E; Dagousset G
    Angew Chem Int Ed Engl; 2018 Oct; 57(42):13790-13794. PubMed ID: 30084188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective deoxygenative alkylation of alcohols via photocatalytic domino radical fragmentations.
    Guo HM; Wu X
    Nat Commun; 2021 Sep; 12(1):5365. PubMed ID: 34508098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of Alkoxyl Radicals by Photoredox Catalysis Enables Selective C(sp(3))-H Functionalization under Mild Reaction Conditions.
    Zhang J; Li Y; Zhang F; Hu C; Chen Y
    Angew Chem Int Ed Engl; 2016 Jan; 55(5):1872-5. PubMed ID: 26680274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoredox-Catalyzed Deoxygenation of Hexafluoroacetone Hydrate Enables Hydroxypolyfluoroalkylation of Alkenes.
    Xie ZZ; Zheng Y; Yuan CP; Guan JP; Ye ZP; Xiao JA; Xiang HY; Chen K; Chen XQ; Yang H
    Angew Chem Int Ed Engl; 2022 Nov; 61(45):e202211035. PubMed ID: 36111983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alcohols as Alkylating Agents: Photoredox-Catalyzed Conjugate Alkylation via In Situ Deoxygenation.
    Wang JZ; Sakai HA; MacMillan DWC
    Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202207150. PubMed ID: 35727296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible-Light-Induced Alkoxyl Radical Generation Enables Selective C(sp(3))-C(sp(3)) Bond Cleavage and Functionalizations.
    Jia K; Zhang F; Huang H; Chen Y
    J Am Chem Soc; 2016 Feb; 138(5):1514-7. PubMed ID: 26829105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible-Light Photoredox-Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO
    Song L; Fu DM; Chen L; Jiang YX; Ye JH; Zhu L; Lan Y; Fu Q; Yu DG
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):21121-21128. PubMed ID: 32750191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarity Umpolung Strategy for the Radical Alkylation of Alkenes.
    Liu J; Wu S; Yu J; Lu C; Wu Z; Wu X; Xue XS; Zhu C
    Angew Chem Int Ed Engl; 2020 May; 59(21):8195-8202. PubMed ID: 32048420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide converts fatty acid alkoxyl radicals into fatty acid allyl radicals.
    Koshiishi I; Yokota A; Takajo T
    Arch Biochem Biophys; 2011 Dec; 516(2):154-9. PubMed ID: 22037355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the reactivity of alkoxyl radicals from 1,5-hydrogen atom transfer to 1,2-silyl transfer.
    Yang Z; Niu Y; He X; Chen S; Liu S; Li Z; Chen X; Zhang Y; Lan Y; Shen X
    Nat Commun; 2021 Apr; 12(1):2131. PubMed ID: 33837201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective 1,2-Aryl-Aminoalkylation of Alkenes Enabled by Metallaphotoredox Catalysis.
    Zheng S; Chen Z; Hu Y; Xi X; Liao Z; Li W; Yuan W
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17910-17916. PubMed ID: 32633062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible Light-Induced Deoxygenation and Allylation/Vinylation of Pyridyl Ethers.
    Wang F; Tang Y; Li X; Chen J; Yang J
    Org Lett; 2022 Oct; 24(40):7309-7314. PubMed ID: 36190797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beneficial effect of internal hydrogen bonding interactions on the beta-fragmentation of primary alkoxyl radicals. Two-step conversion of D-xylo- and D-ribofuranoses into L-threose and D-erythrose, respectively.
    Hernandez-García L; Quintero L; Sánchez M; Sartillo-Piscil F
    J Org Chem; 2007 Oct; 72(22):8196-201. PubMed ID: 17900138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-assisted generation of alkoxyl radicals and their use in additions, beta-fragmentations, and remote functionalizations.
    Hartung J; Daniel K; Gottwald T; Gross A; Schneiders N
    Org Biomol Chem; 2006 Jun; 4(11):2313-22. PubMed ID: 16729142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible-Light-Induced Acylative Coupling of Benzoic Acid Derivatives with Alkenes to Dihydrochalcones.
    Fan X; Sun X; Ji M; Tong H; Zhang W; Sun Z; Chu W
    Org Lett; 2022 Oct; 24(40):7271-7275. PubMed ID: 36190778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis.
    Manley DW; Walton JC
    Beilstein J Org Chem; 2015; 11():1570-82. PubMed ID: 26664577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of unnatural amino acids from serine derivatives by beta-fragmentation of primary alkoxyl radicals.
    Boto A; Gallardo JA; Hernández D; Hernández R
    J Org Chem; 2007 Sep; 72(19):7260-9. PubMed ID: 17696478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brønsted Base Assisted Photoredox Catalysis: Proton Coupled Electron Transfer for Remote C-C Bond Formation via Amidyl Radicals.
    Jia J; Ho YA; Bülow RF; Rueping M
    Chemistry; 2018 Sep; 24(53):14054-14058. PubMed ID: 29939456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible-Light-Driven Palladium-Catalyzed Radical Alkylation of C-H Bonds with Unactivated Alkyl Bromides.
    Zhou WJ; Cao GM; Shen G; Zhu XY; Gui YY; Ye JH; Sun L; Liao LL; Li J; Yu DG
    Angew Chem Int Ed Engl; 2017 Dec; 56(49):15683-15687. PubMed ID: 29048716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.