These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 30624049)
21. Tough, Stretchable, Compressive Novel Polymer/Graphene Oxide Nanocomposite Hydrogels with Excellent Self-Healing Performance. Pan C; Liu L; Chen Q; Zhang Q; Guo G ACS Appl Mater Interfaces; 2017 Nov; 9(43):38052-38061. PubMed ID: 29019393 [TBL] [Abstract][Full Text] [Related]
22. Fully physical crosslinked BSA-based conductive hydrogels with high strength and fast self-recovery for human motion and wireless electrocardiogram sensing. Xu J; Zhang H; Guo Z; Zhang C; Tan H; Gong G; Yu M; Xu L Int J Biol Macromol; 2023 Mar; 230():123195. PubMed ID: 36634804 [TBL] [Abstract][Full Text] [Related]
23. Chitosan-based double cross-linked ionic hydrogels as a strain and pressure sensor with broad strain-range and high sensitivity. Li X; Liu Z; Liang Y; Wang LM; Liu YD J Mater Chem B; 2022 May; 10(18):3434-3443. PubMed ID: 35403658 [TBL] [Abstract][Full Text] [Related]
24. Three-Dimensional Printed Hydrogels with High Elasticity, High Toughness, and Ionic Conductivity for Multifunctional Applications. Deng Z; Qian T; Hang F ACS Biomater Sci Eng; 2020 Dec; 6(12):7061-7070. PubMed ID: 33320594 [TBL] [Abstract][Full Text] [Related]
25. Effect of Poly(acrylamide-acrylic acid) on the Fire Resistance and Anti-Aging Properties of Transparent Flame-Retardant Hydrogel Applied in Fireproof Glass. Wang F; Cai M; Yan L Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771226 [TBL] [Abstract][Full Text] [Related]
26. Preparation and characterization of hybrid double network chitosan/poly(acrylic amide-acrylic acid) high toughness hydrogel through Al Jiang X; Xiang N; Wang J; Zhao Y; Hou L Carbohydr Polym; 2017 Oct; 173():701-706. PubMed ID: 28732916 [TBL] [Abstract][Full Text] [Related]
27. A facile method to synthesize strong salt-enhanced hydrogels based on reversible physical interaction. Zhang B; Wang C; Wang Y; Li T; Zhai K; Zhang F; Bai Y; Tan Y; Ma Y; Xu K; Wang P Soft Matter; 2020 Jan; 16(3):738-746. PubMed ID: 31825059 [TBL] [Abstract][Full Text] [Related]
28. A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states. Chen H; Yang F; Hu R; Zhang M; Ren B; Gong X; Ma J; Jiang B; Chen Q; Zheng J J Mater Chem B; 2016 Sep; 4(35):5814-5824. PubMed ID: 32263754 [TBL] [Abstract][Full Text] [Related]
29. Self-Healable and Super-Tough Double-Network Hydrogel Fibers from Dynamic Acylhydrazone Bonding and Supramolecular Interactions. Hua J; Liu C; Fei B; Liu Z Gels; 2022 Feb; 8(2):. PubMed ID: 35200482 [TBL] [Abstract][Full Text] [Related]
30. Thin, tough, pH-sensitive hydrogel films with rapid load recovery. Naficy S; Spinks GM; Wallace GG ACS Appl Mater Interfaces; 2014 Mar; 6(6):4109-14. PubMed ID: 24628406 [TBL] [Abstract][Full Text] [Related]
31. Dual-Physical Cross-Linked Tough and Photoluminescent Hydrogels with Good Biocompatibility and Antibacterial Activity. Hu C; Wang MX; Sun L; Yang JH; Zrínyi M; Chen YM Macromol Rapid Commun; 2017 May; 38(10):. PubMed ID: 28295772 [TBL] [Abstract][Full Text] [Related]
32. Mechanically Strong, Tough, and Shape Deformable Poly(acrylamide- Jiao C; Zhang J; Liu T; Peng X; Wang H ACS Appl Mater Interfaces; 2020 Sep; 12(39):44205-44214. PubMed ID: 32871067 [TBL] [Abstract][Full Text] [Related]
33. Tough, rapid-recovery composite hydrogels fabricated via synergistic core-shell microgel covalent bonding and Fe Liang X; Deng Y; Pei X; Zhai K; Xu K; Tan Y; Gong X; Wang P Soft Matter; 2017 Apr; 13(14):2654-2662. PubMed ID: 28327730 [TBL] [Abstract][Full Text] [Related]
34. Muscle-inspired double-network hydrogels with robust mechanical property, biocompatibility and ionic conductivity. Geng L; Hu S; Cui M; Wu J; Huang A; Shi S; Peng X Carbohydr Polym; 2021 Jun; 262():117936. PubMed ID: 33838813 [TBL] [Abstract][Full Text] [Related]
35. High-Strength, Tough, Fatigue Resistant, and Self-Healing Hydrogel Based on Dual Physically Cross-Linked Network. Gong Z; Zhang G; Zeng X; Li J; Li G; Huang W; Sun R; Wong C ACS Appl Mater Interfaces; 2016 Sep; 8(36):24030-7. PubMed ID: 27548327 [TBL] [Abstract][Full Text] [Related]
36. Super-tough, anti-fatigue, self-healable, anti-fogging, and UV shielding hybrid hydrogel prepared via simultaneous dual in situ sol-gel technique and radical polymerization. Du J; She X; Zhu W; Yang Q; Zhang H; Tsou C J Mater Chem B; 2019 Dec; 7(45):7162-7175. PubMed ID: 31647091 [TBL] [Abstract][Full Text] [Related]
37. Softening and Shape Morphing of Stiff Tough Hydrogels by Localized Unlocking of the Trivalent Ionically Cross-Linked Centers. Wang J; Li T; Chen F; Zhou D; Li B; Zhou X; Gan T; Handschuh-Wang S; Zhou X Macromol Rapid Commun; 2018 Jun; 39(12):e1800143. PubMed ID: 29749078 [TBL] [Abstract][Full Text] [Related]
38. Swelling and mechanical properties of alginate hydrogels with respect to promotion of neural growth. Matyash M; Despang F; Ikonomidou C; Gelinsky M Tissue Eng Part C Methods; 2014 May; 20(5):401-11. PubMed ID: 24044417 [TBL] [Abstract][Full Text] [Related]
39. Integration of Macro-Cross-Linker and Metal Coordination: A Super Stretchable Hydrogel with High Toughness. Das Mahapatra R; Imani KBC; Yoon J ACS Appl Mater Interfaces; 2020 Sep; 12(36):40786-40793. PubMed ID: 32805982 [TBL] [Abstract][Full Text] [Related]