BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30624065)

  • 1. Toward Enhancing the Chlorine Resistance of Reverse Osmosis Membranes: An Effective Strategy via an End-capping Technology.
    Yao Y; Zhang W; Du Y; Li M; Wang L; Zhang X
    Environ Sci Technol; 2019 Feb; 53(3):1296-1304. PubMed ID: 30624065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorine resistance property improvement of polyamide reverse osmosis membranes through cross-linking degree increment.
    Gholami S; Rezvani A; Vatanpour V; Khoshravesh SH; Llorens J; Engel E; Castaño O; Cortina JL
    Sci Total Environ; 2023 Sep; 889():164283. PubMed ID: 37209732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies.
    Liu C; Wang W; Yang B; Xiao K; Zhao H
    Water Res; 2021 May; 195():116976. PubMed ID: 33706215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does chlorination of seawater reverse osmosis membranes control biofouling?
    Khan MT; Hong PY; Nada N; Croue JP
    Water Res; 2015 Jul; 78():84-97. PubMed ID: 25917390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of end-of-life reverse osmosis membranes for membrane biofilms reactors (MBfRs). Effect of chlorination on the membrane surface and gas permeability.
    Morón-López J; Nieto-Reyes L; Aguado S; El-Shehawy R; Molina S
    Chemosphere; 2019 Sep; 231():103-112. PubMed ID: 31128344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Flux Nanofibrous Composite Reverse Osmosis Membrane Containing Interfacial Water Channels for Desalination.
    Wang Q; Hu L; Ma H; Venkateswaran S; Hsiao BS
    ACS Appl Mater Interfaces; 2023 May; 15(21):26199-26214. PubMed ID: 37192294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite.
    Inukai S; Cruz-Silva R; Ortiz-Medina J; Morelos-Gomez A; Takeuchi K; Hayashi T; Tanioka A; Araki T; Tejima S; Noguchi T; Terrones M; Endo M
    Sci Rep; 2015 Sep; 5():13562. PubMed ID: 26333385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.
    Belila A; El-Chakhtoura J; Otaibi N; Muyzer G; Gonzalez-Gil G; Saikaly PE; van Loosdrecht MCM; Vrouwenvelder JS
    Water Res; 2016 May; 94():62-72. PubMed ID: 26925544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of antiscalants on biofouling of RO membranes in seawater desalination.
    Sweity A; Oren Y; Ronen Z; Herzberg M
    Water Res; 2013 Jun; 47(10):3389-98. PubMed ID: 23615335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure dose and temperature of chlorine on deterioration of thin-film composite membranes for reverse osmosis and nanofiltration.
    An SA; Park CG; Lee JS; Cho SM; Woo YC; Kim HS
    Chemosphere; 2023 Aug; 333():138929. PubMed ID: 37207901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorine-Resistant Polyamide Reverse Osmosis Membrane with Monitorable and Regenerative Sacrificial Layers.
    Huang H; Lin S; Zhang L; Hou L
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10214-10223. PubMed ID: 28240852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification Mechanism of Polyamide Reverse Osmosis Membrane by Persulfate: Roles of Hydroxyl and Sulfate Radicals.
    Cheng W; Xu H; Wang P; Wang L; Szymczyk A; Croué JP; Zhang T
    Environ Sci Technol; 2022 Jun; 56(12):8864-8874. PubMed ID: 35622994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of biofouling potential in cartridge filter by using chlorine dioxide for enhancing anti-biofouling of seawater reverse osmosis membrane.
    Song M; Im SJ; Jeong D; Jang A
    Environ Res; 2020 Jan; 180():108866. PubMed ID: 31703977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterioration Mechanism of a Tertiary Polyamide Reverse Osmosis Membrane by Hypochlorite.
    Hashiba K; Nakai S; Ohno M; Nishijima W; Gotoh T; Iizawa T
    Environ Sci Technol; 2019 Aug; 53(15):9109-9117. PubMed ID: 31276395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design considerations for wastewater treatment by reverse osmosis.
    Bartels CR; Wilf M; Andes K; Iong J
    Water Sci Technol; 2005; 51(6-7):473-82. PubMed ID: 16004010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between performance deterioration of a polyamide reverse osmosis membrane used in a seawater desalination plant and changes in its physicochemical properties.
    Suzuki T; Tanaka R; Tahara M; Isamu Y; Niinae M; Lin L; Wang J; Luh J; Coronell O
    Water Res; 2016 Sep; 100():326-336. PubMed ID: 27214345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. More resilient polyester membranes for high-performance reverse osmosis desalination.
    Yao Y; Zhang P; Sun F; Zhang W; Li M; Sha G; Teng L; Wang X; Huo M; DuChanois RM; Cao T; Boo C; Zhang X; Elimelech M
    Science; 2024 Apr; 384(6693):333-338. PubMed ID: 38669571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic interpenetrating polyamide-PDMS membranes for desalination, pesticides removal and enhanced chlorine tolerance.
    Khairkar SR; Pansare AV; Shedge AA; Chhatre SY; Suresh AK; Chakrabarti S; Patil VR; Nagarkar AA
    Chemosphere; 2020 Nov; 258():127179. PubMed ID: 32554002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling.
    Powell J; Luh J; Coronell O
    Environ Sci Technol; 2014; 48(5):2741-9. PubMed ID: 24506252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of robust organosilica membranes for reverse osmosis.
    Xu R; Wang J; Kanezashi M; Yoshioka T; Tsuru T
    Langmuir; 2011 Dec; 27(23):13996-9. PubMed ID: 22040055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.