These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30624073)

  • 1. Molecular Modeling of Surfactant Micellization Using Solvent-Accessible Surface Area.
    Chen H; Panagiotopoulos AZ
    Langmuir; 2019 Feb; 35(6):2443-2450. PubMed ID: 30624073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implicit-solvent models for micellization: nonionic surfactants and temperature-dependent properties.
    Jusufi A; Sanders S; Klein ML; Panagiotopoulos AZ
    J Phys Chem B; 2011 Feb; 115(5):990-1001. PubMed ID: 21218830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implicit solvent models for micellization of ionic surfactants.
    Jusufi A; Hynninen AP; Panagiotopoulos AZ
    J Phys Chem B; 2008 Nov; 112(44):13783-92. PubMed ID: 18844395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explicit- and implicit-solvent simulations of micellization in surfactant solutions.
    Jusufi A; Panagiotopoulos AZ
    Langmuir; 2015 Mar; 31(11):3283-92. PubMed ID: 25226280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the critical micelle concentration in simulations of surfactant systems.
    Santos AP; Panagiotopoulos AZ
    J Chem Phys; 2016 Jan; 144(4):044709. PubMed ID: 26827230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientational bonding model for temperature dependent micellization and solubility of diblock surfactants.
    Davis JR; Panagiotopoulos AZ
    J Chem Phys; 2009 Sep; 131(11):114901. PubMed ID: 19778143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte carlo simulations of micellization in model ionic surfactants: application to sodium dodecyl sulfate.
    Cheong DW; Panagiotopoulos AZ
    Langmuir; 2006 Apr; 22(9):4076-83. PubMed ID: 16618147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcalorimetric study on micellization of nonionic surfactants with a benzene ring or adamantane in their hydrophobic chains.
    Li Y; Reeve J; Wang Y; Thomas RK; Wang J; Yan H
    J Phys Chem B; 2005 Aug; 109(33):16070-4. PubMed ID: 16853041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micellization of alkyl-propoxy-ethoxylate surfactants in water-polar organic solvent mixtures.
    Sarkar B; Lam S; Alexandridis P
    Langmuir; 2010 Jul; 26(13):10532-40. PubMed ID: 20334370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chain architecture and micellization: a mean-field coarse-grained model for poly(ethylene oxide) alkyl ether surfactants.
    GarcĂ­a Daza FA; Colville AJ; Mackie AD
    J Chem Phys; 2015 Mar; 142(11):114902. PubMed ID: 25796261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants.
    Srinivasan V; Blankschtein D
    Langmuir; 2005 Feb; 21(4):1647-60. PubMed ID: 15697320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution.
    Stephenson BC; Goldsipe A; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(8):2357-71. PubMed ID: 18247591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Temperature and Concentration on the Self-Assembly of Nonionic C
    Kroll P; Benke J; Enders S; Brandenbusch C; Sadowski G
    ACS Omega; 2022 Mar; 7(8):7057-7065. PubMed ID: 35252696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport Properties of Aqueous Solutions of Alkyltrimethylammonium Bromide Surfactants at 25 degrees C.
    D'Errico G; Ortona O; Paduano L; Vitagliano V
    J Colloid Interface Sci; 2001 Jul; 239(1):264-271. PubMed ID: 11397073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the hydrophobic effect. 1. A computer simulation-molecular-thermodynamic model for the self-assembly of hydrophobic and amphiphilic solutes in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1025-44. PubMed ID: 17266257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic screening and charge correlation effects in micellization of ionic surfactants.
    Jusufi A; Hynninen AP; Haataja M; Panagiotopoulos AZ
    J Phys Chem B; 2009 May; 113(18):6314-20. PubMed ID: 19361177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of single chain zwitterionic phosphocholine surfactants: effects of length of alkyl chain and head group linker.
    Yaseen M; Lu JR; Webster JR; Penfold J
    Biophys Chem; 2005 Oct; 117(3):263-73. PubMed ID: 15992988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.