These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30624118)

  • 41. Nitric oxide signaling differentially affects habitat choice by two larval morphs of the sea slug Alderia willowi: mechanistic insight into evolutionary transitions in dispersal strategies.
    Romero MR; Phuong MA; Bishop C; Krug PJ
    J Exp Biol; 2013 Mar; 216(Pt 6):1114-25. PubMed ID: 23197096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification.
    Rossi T; Nagelkerken I; Pistevos JC; Connell SD
    Biol Lett; 2016 Jan; 12(1):20150937. PubMed ID: 26763221
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mini review: hydrodynamics of larval settlement into fouling communities.
    Koehl MR
    Biofouling; 2007; 23(5-6):357-68. PubMed ID: 17852070
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Size-specific predation on marine invertebrate larvae.
    Allen JD
    Biol Bull; 2008 Feb; 214(1):42-9. PubMed ID: 18258774
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Larval desperation and histamine: how simple responses can lead to complex changes in larval behaviour.
    Swanson RL; Marshall DJ; Steinberg PD
    J Exp Biol; 2007 Sep; 210(Pt 18):3228-35. PubMed ID: 17766300
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Habitat selection by marine larvae in changing chemical environments.
    Lecchini D; Dixson DL; Lecellier G; Roux N; Frédérich B; Besson M; Tanaka Y; Banaigs B; Nakamura Y
    Mar Pollut Bull; 2017 Jan; 114(1):210-217. PubMed ID: 27600273
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rearing larvae of sea urchins and sea stars for developmental studies.
    Lowe CJ; Wray GA
    Methods Mol Biol; 2000; 135():9-15. PubMed ID: 10791299
    [No Abstract]   [Full Text] [Related]  

  • 48. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment.
    Evans TG; Chan F; Menge BA; Hofmann GE
    Mol Ecol; 2013 Mar; 22(6):1609-25. PubMed ID: 23317456
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of dopamine on early larvae of sea urchins, Mesocentrotus nudus and Strongylocentrotus intermedius.
    Kalachev AV
    J Exp Zool B Mol Dev Evol; 2020 Sep; 334(6):373-380. PubMed ID: 32902119
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sea urchin larvae decipher the epiphytic bacterial community composition when selecting sites for attachment and metamorphosis.
    Nielsen SJ; Harder T; Steinberg PD
    FEMS Microbiol Ecol; 2015 Jan; 91(1):1-9. PubMed ID: 25764535
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dispersal strategies in sponge larvae: integrating the life history of larvae and the hydrologic component.
    Mariani S; Uriz MJ; Turon X; Alcoverro T
    Oecologia; 2006 Aug; 149(1):174-84. PubMed ID: 16710659
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sea Urchin Larvae as a Model for Postembryonic Development.
    Heyland A; Schuh N; Rast J
    Results Probl Cell Differ; 2018; 65():137-161. PubMed ID: 30083919
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Larval sensory abilities and mechanisms of habitat selection of a coral reef fish during settlement.
    Lecchini D; Shima J; Banaigs B; Galzin R
    Oecologia; 2005 Mar; 143(2):326-34. PubMed ID: 15647903
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Visual and chemical cues in habitat selection of sepioid larvae.
    Lecchini D
    C R Biol; 2011 Dec; 334(12):911-5. PubMed ID: 22123093
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Induction of settlement in mussel (Perna canaliculus) larvae by vessel noise.
    Wilkens SL; Stanley JA; Jeffs AG
    Biofouling; 2012; 28(1):65-72. PubMed ID: 22235850
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustacean larvae.
    Queiroga H; Blanton J
    Adv Mar Biol; 2005; 47():107-214. PubMed ID: 15596167
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Earliest ciliary swimming effects vertical transport of planktonic embryos in turbulence and shear flow.
    McDonald KA
    J Exp Biol; 2012 Jan; 215(Pt 1):141-51. PubMed ID: 22162862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Settlement-competency period of planulae and genetic differentiation of the scleractinian coral Acropora digitifera.
    Nishikawa A; Sakai K
    Zoolog Sci; 2005 Apr; 22(4):391-9. PubMed ID: 15846048
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Developmental Consequences of Temperature and Salinity Stress in the Sand Dollar
    Abdel-Raheem ST; Allen JD
    Biol Bull; 2019 Dec; 237(3):227-240. PubMed ID: 31922907
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae.
    Huggett MJ; Williamson JE; de Nys R; Kjelleberg S; Steinberg PD
    Oecologia; 2006 Oct; 149(4):604-19. PubMed ID: 16794830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.