These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 30624226)
21. A Smart Wirelessly Powered Homecage for Long-Term High-Throughput Behavioral Experiments. Lee B; Kiani M; Ghovanloo M IEEE Sens J; 2015 Sep; 15(9):4905-4916. PubMed ID: 26257586 [TBL] [Abstract][Full Text] [Related]
22. The Neurochip-2: an autonomous head-fixed computer for recording and stimulating in freely behaving monkeys. Zanos S; Richardson AG; Shupe L; Miles FP; Fetz EE IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):427-35. PubMed ID: 21632309 [TBL] [Abstract][Full Text] [Related]
23. Wireless neural stimulation in freely behaving small animals. Arfin SK; Long MA; Fee MS; Sarpeshkar R J Neurophysiol; 2009 Jul; 102(1):598-605. PubMed ID: 19386759 [TBL] [Abstract][Full Text] [Related]
24. Wireless hippocampal neural recording via a multiple input RF receiver to construct place-specific firing fields. Lee SB; Manns JR; Ghovanloo M Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():763-6. PubMed ID: 23366004 [TBL] [Abstract][Full Text] [Related]
25. A wireless multi-channel recording system for freely behaving mice and rats. Fan D; Rich D; Holtzman T; Ruther P; Dalley JW; Lopez A; Rossi MA; Barter JW; Salas-Meza D; Herwik S; Holzhammer T; Morizio J; Yin HH PLoS One; 2011; 6(7):e22033. PubMed ID: 21765934 [TBL] [Abstract][Full Text] [Related]
27. A programmable closed-loop recording and stimulating wireless system for behaving small laboratory animals. Angotzi GN; Boi F; Zordan S; Bonfanti A; Vato A Sci Rep; 2014 Aug; 4():5963. PubMed ID: 25096831 [TBL] [Abstract][Full Text] [Related]
28. A wireless transmission neural interface system for unconstrained non-human primates. Fernandez-Leon JA; Parajuli A; Franklin R; Sorenson M; Felleman DJ; Hansen BJ; Hu M; Dragoi V J Neural Eng; 2015 Oct; 12(5):056005. PubMed ID: 26269496 [TBL] [Abstract][Full Text] [Related]
29. A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device. Jia Y; Mirbozorgi SA; Lee B; Khan W; Madi F; Inan OT; Weber A; Li W; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):608-618. PubMed ID: 31135371 [TBL] [Abstract][Full Text] [Related]
30. An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications. Seung Bae Lee ; Hyung-Min Lee ; Kiani M; Uei-Ming Jow ; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2010 Dec; 4(6):360-71. PubMed ID: 23850753 [TBL] [Abstract][Full Text] [Related]
31. A Self-Adaptive Dual-ILRO Clock-Recovery Technique for Two-Tone Battery-Free Crystal-Free Neural-Recording SoC. Chang Z; Yang C; Zhang Y; Li Z; Gao H; Luo Y; Xu K; Pan G; Zhao B IEEE Trans Biomed Circuits Syst; 2024 Feb; 18(1):39-50. PubMed ID: 37549076 [TBL] [Abstract][Full Text] [Related]
33. A low-cost multichannel wireless neural stimulation system for freely roaming animals. Alam M; Chen X; Fernandez E J Neural Eng; 2013 Dec; 10(6):066010. PubMed ID: 24162159 [TBL] [Abstract][Full Text] [Related]
34. Wearable, battery-powered, wireless, programmable 8-channel neural stimulator. Farahmand S; Vahedian H; Abedinkhan Eslami M; Sodagar AM Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6120-3. PubMed ID: 23367325 [TBL] [Abstract][Full Text] [Related]
35. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Piech DK; Johnson BC; Shen K; Ghanbari MM; Li KY; Neely RM; Kay JE; Carmena JM; Maharbiz MM; Muller R Nat Biomed Eng; 2020 Feb; 4(2):207-222. PubMed ID: 32076132 [TBL] [Abstract][Full Text] [Related]
36. A Wireless, Bidirectional Interface for In Vivo Recording and Stimulation of Neural Activity in Freely Behaving Rats. Melo-Thomas L; Engelhardt KA; Thomas U; Hoehl D; Thomas S; Wöhr M; Werner B; Bremmer F; Schwarting RKW J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155767 [TBL] [Abstract][Full Text] [Related]
37. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. Borton DA; Yin M; Aceros J; Nurmikko A J Neural Eng; 2013 Apr; 10(2):026010. PubMed ID: 23428937 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of a closed loop inductive power transmission system on an awake behaving animal subject. Kiani M; Kwon KY; Zhang F; Oweiss K; Ghovanloo M Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7658-61. PubMed ID: 22256112 [TBL] [Abstract][Full Text] [Related]
39. A Fully Integrated Wireless Compressed Sensing Neural Signal Acquisition System for Chronic Recording and Brain Machine Interface. Liu X; Zhang M; Xiong T; Richardson AG; Lucas TH; Chin PS; Etienne-Cummings R; Tran TD; Van der Spiegel J IEEE Trans Biomed Circuits Syst; 2016 Aug; 10(4):874-883. PubMed ID: 27448368 [TBL] [Abstract][Full Text] [Related]
40. A 1.02 μW Battery-Less, Continuous Sensing and Post-Processing SiP for Wearable Applications. Lukas CJ; Yahya FB; Breiholz J; Roy A; Chen X; Patel HN; Liu N; Kosari A; Li S; Akella Kamakshi D; Ayorinde O; Wentzloff DD; Calhoun BH IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):271-281. PubMed ID: 30676976 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]