BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30624232)

  • 1. Regularizing Deep Neural Networks by Enhancing Diversity in Feature Extraction.
    Ayinde BO; Inanc T; Zurada JM
    IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2650-2661. PubMed ID: 30624232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redundant feature pruning for accelerated inference in deep neural networks.
    Ayinde BO; Inanc T; Zurada JM
    Neural Netw; 2019 Oct; 118():148-158. PubMed ID: 31279285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonredundant sparse feature extraction using autoencoders with receptive fields clustering.
    Ayinde BO; Zurada JM
    Neural Netw; 2017 Sep; 93():99-109. PubMed ID: 28552509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regularization of deep neural networks with spectral dropout.
    Khan SH; Hayat M; Porikli F
    Neural Netw; 2019 Feb; 110():82-90. PubMed ID: 30504041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of adaptive SVD regularization for deep neural networks.
    Bejani MM; Ghatee M
    Neural Netw; 2020 Aug; 128():33-46. PubMed ID: 32413786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Deep Convolutional Neural Network-Based Contextual Recognition of Arabic Handwritten Scripts.
    Ahmed R; Gogate M; Tahir A; Dashtipour K; Al-Tamimi B; Hawalah A; El-Affendi MA; Hussain A
    Entropy (Basel); 2021 Mar; 23(3):. PubMed ID: 33805765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biased Dropout and Crossmap Dropout: Learning towards effective Dropout regularization in convolutional neural network.
    Poernomo A; Kang DK
    Neural Netw; 2018 Aug; 104():60-67. PubMed ID: 29715684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ACR-SA: attention-based deep model through two-channel CNN and Bi-RNN for sentiment analysis.
    Kamyab M; Liu G; Rasool A; Adjeisah M
    PeerJ Comput Sci; 2022; 8():e877. PubMed ID: 35494855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybridized sine cosine algorithm with convolutional neural networks dropout regularization application.
    Bacanin N; Zivkovic M; Al-Turjman F; Venkatachalam K; Trojovský P; Strumberger I; Bezdan T
    Sci Rep; 2022 Apr; 12(1):6302. PubMed ID: 35440609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature flow regularization: Improving structured sparsity in deep neural networks.
    Wu Y; Lan Y; Zhang L; Xiang Y
    Neural Netw; 2023 Apr; 161():598-613. PubMed ID: 36822145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medical Image Classification Based on Deep Features Extracted by Deep Model and Statistic Feature Fusion with Multilayer Perceptron
    Lai Z; Deng H
    Comput Intell Neurosci; 2018; 2018():2061516. PubMed ID: 30298088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
    Lu X; Chen Y; Li X
    IEEE Trans Image Process; 2018 Jan.; 27(1):106-120. PubMed ID: 28952940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forward propagation dropout in deep neural networks using Jensen-Shannon and random forest feature importance ranking.
    Heidari M; Moattar MH; Ghaffari H
    Neural Netw; 2023 Aug; 165():238-247. PubMed ID: 37307667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoting the Shift From Pixel-Level Correlations to Object Semantics Learning by Rethinking Computer Vision Benchmark Data Sets.
    Osório M; Wichert A
    Neural Comput; 2024 May; ():1-17. PubMed ID: 38776966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning-Based Diagnosis of Peripheral Artery Disease via Continuous Property-Adversarial Regularization: Preliminary in Silico Study.
    Kim S; Hahn JO; Youn BD
    IEEE Access; 2021; 9():127433-127443. PubMed ID: 35382437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks.
    Zhang S; Yao Y; Hu J; Zhao Y; Li S; Hu J
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31091802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards dropout training for convolutional neural networks.
    Wu H; Gu X
    Neural Netw; 2015 Nov; 71():1-10. PubMed ID: 26277608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adaptive deep Q-learning strategy for handwritten digit recognition.
    Qiao J; Wang G; Li W; Chen M
    Neural Netw; 2018 Nov; 107():61-71. PubMed ID: 29735249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shakeout: A New Approach to Regularized Deep Neural Network Training.
    Kang G; Li J; Tao D
    IEEE Trans Pattern Anal Mach Intell; 2018 May; 40(5):1245-1258. PubMed ID: 28489533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.