These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30624831)

  • 1. Modeling chloramine decay in full-scale drinking water supply systems.
    Ricca H; Aravinthan V; Mahinthakumar G
    Water Environ Res; 2019 May; 91(5):441-454. PubMed ID: 30624831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloramine demand estimation using surrogate chemical and microbiological parameters.
    Moradi S; Liu S; Chow CWK; van Leeuwen J; Cook D; Drikas M; Amal R
    J Environ Sci (China); 2017 Jul; 57():1-7. PubMed ID: 28647228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of soluble microbial products accelerating chloramine decay in nitrifying bulk water samples.
    Bal Krishna KC; Sathasivan A; Chandra Sarker D
    Water Res; 2012 Sep; 46(13):3977-88. PubMed ID: 22695354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monochloramine loss in the presence of humic acid.
    Duirk SE; Gombert B; Choi J; Valentine RL
    J Environ Monit; 2002 Feb; 4(1):85-9. PubMed ID: 11871712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing a chloramine decay index to understand nitrification: A case study of two chloraminated drinking water distribution systems.
    Moradi S; Liu S; Chow CWK; van Leeuwen J; Cook D; Drikas M; Amal R
    J Environ Sci (China); 2017 Jul; 57():170-179. PubMed ID: 28647237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling monochloramine loss in the presence of natural organic matter.
    Duirk SE; Gombert B; Croué JP; Valentine RL
    Water Res; 2005 Sep; 39(14):3418-31. PubMed ID: 16045963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the formation of N-nitrosodimethylamine (NDMA) from the reaction of natural organic matter (NOM) with monochloramine.
    Chen Z; Valentine RL
    Environ Sci Technol; 2006 Dec; 40(23):7290-7. PubMed ID: 17180980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.
    Bai X; Zhi X; Zhu H; Meng M; Zhang M
    Water Res; 2015 Jan; 68():812-20. PubMed ID: 25466639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.
    Fisher I; Kastl G; Sathasivan A
    Water Res; 2017 Nov; 125():427-437. PubMed ID: 28892770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting the water odor caused by chloramines during drinking water disinfection.
    Wang AQ; Lin YL; Xu B; Hu CY; Gao ZC; Liu Z; Cao TC; Gao NY
    Sci Total Environ; 2018 Oct; 639():687-694. PubMed ID: 29803040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of stratification on chloramine decay in distribution system service reservoirs.
    Fisher I; Sathasivan A; Chuo P; Kastl G
    Water Res; 2009 Mar; 43(5):1403-13. PubMed ID: 19117587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of breakpoint chlorination to reduce accelerated chemical chloramine decay in severely nitrified bulk waters.
    Bal Krishna KC; Sathasivan A; Kastl G
    Chemosphere; 2014 Dec; 117():692-700. PubMed ID: 25461936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Distribution Characteristics of Viruses Microorganisms in a Water Supply System with Combined Ultraviolet Chloramine Disinfection].
    Han X; Sun JW; Zhang L; Wang ZM; Bai XH
    Huan Jing Ke Xue; 2021 Feb; 42(2):860-866. PubMed ID: 33742880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review.
    Li RA; McDonald JA; Sathasivan A; Khan SJ
    Water Res; 2019 Apr; 153():335-348. PubMed ID: 30743084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling reaction and transport of multiple species in water distribution systems.
    Shang F; Uber JG; Rossman LA
    Environ Sci Technol; 2008 Feb; 42(3):808-14. PubMed ID: 18323106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated chemical and toxicological investigation of UV-chlorine/chloramine drinking water treatment.
    Lyon BA; Milsk RY; DeAngelo AB; Simmons JE; Moyer MP; Weinberg HS
    Environ Sci Technol; 2014 Jun; 48(12):6743-53. PubMed ID: 24840005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Chloramine and Coupon Material on Biofilm Abundance and Community Composition in Bench-Scale Simulated Water Distribution Systems and Comparison with Full-Scale Water Mains.
    Aggarwal S; Gomez-Smith CK; Jeon Y; LaPara TM; Waak MB; Hozalski RM
    Environ Sci Technol; 2018 Nov; 52(22):13077-13088. PubMed ID: 30351033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of colorimetric and membrane introduction mass spectrometry techniques for chloramine analysis.
    Lee W; Westerhoff P; Yang X; Shang C
    Water Res; 2007 Jul; 41(14):3097-102. PubMed ID: 17544050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic examination of effects of iodide on the chloramination of natural organic matter.
    He S; Yan M; Korshin GV
    Water Res; 2015 Mar; 70():449-57. PubMed ID: 25576692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic chloramines in chlorine-based disinfected water systems: A critical review.
    How ZT; Kristiana I; Busetti F; Linge KL; Joll CA
    J Environ Sci (China); 2017 Aug; 58():2-18. PubMed ID: 28774610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.