These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

721 related articles for article (PubMed ID: 30624911)

  • 1. Mechanistic Landscape of Membrane-Permeabilizing Peptides.
    Guha S; Ghimire J; Wu E; Wimley WC
    Chem Rev; 2019 May; 119(9):6040-6085. PubMed ID: 30624911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering a mechanism of membrane permeabilization by α-hordothionin peptide.
    Oard SV
    Biochim Biophys Acta; 2011 Jun; 1808(6):1737-45. PubMed ID: 21315063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrids made from antimicrobial peptides with different mechanisms of action show enhanced membrane permeabilization.
    Wade HM; Darling LEO; Elmore DE
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182980. PubMed ID: 31067436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic transitions of membrane-active peptides.
    Grage SL; Afonin S; Ulrich AS
    Methods Mol Biol; 2010; 618():183-207. PubMed ID: 20094866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of membrane active peptides with planar supported bilayers: an impedance spectroscopy study.
    Lin J; Motylinski J; Krauson AJ; Wimley WC; Searson PC; Hristova K
    Langmuir; 2012 Apr; 28(14):6088-96. PubMed ID: 22416892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helical membrane peptides to modulate cell function.
    Beevers AJ; Dixon AM
    Chem Soc Rev; 2010 Jun; 39(6):2146-57. PubMed ID: 20502803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study.
    Cheraghi N; Hosseini M; Mohammadinejad S
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):347-356. PubMed ID: 29030244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes.
    Ulmschneider JP; Ulmschneider MB
    Acc Chem Res; 2018 May; 51(5):1106-1116. PubMed ID: 29667836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity.
    Sitaram N; Nagaraj R
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):29-54. PubMed ID: 10590301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum.
    Bagheri M; Beyermann M; Dathe M
    Antimicrob Agents Chemother; 2009 Mar; 53(3):1132-41. PubMed ID: 19104020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes?
    McHenry AJ; Sciacca MF; Brender JR; Ramamoorthy A
    Biochim Biophys Acta; 2012 Dec; 1818(12):3019-24. PubMed ID: 22885355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A common landscape for membrane-active peptides.
    Last NB; Schlamadinger DE; Miranker AD
    Protein Sci; 2013 Jul; 22(7):870-82. PubMed ID: 23649542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides.
    Dathe M; Meyer J; Beyermann M; Maul B; Hoischen C; Bienert M
    Biochim Biophys Acta; 2002 Feb; 1558(2):171-86. PubMed ID: 11779567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer.
    Mukherjee S; Kar RK; Nanga RPR; Mroue KH; Ramamoorthy A; Bhunia A
    Phys Chem Chem Phys; 2017 Jul; 19(29):19289-19299. PubMed ID: 28702543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides?
    Strandberg E; Ulrich AS
    Biochim Biophys Acta; 2015 Sep; 1848(9):1944-54. PubMed ID: 25726906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulations Help Determine the Molecular Mechanisms of Lasioglossin-III and Its Variant Peptides' Membrane Interfacial Interactions.
    Kumar A; Mishra B; Konar AD; Mylonakis E; Basu A
    J Phys Chem B; 2024 Jun; 128(25):6049-6058. PubMed ID: 38840325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical-guided design of cathelicidin-derived peptides generates membrane active variants with therapeutic potential.
    Oliveira NGJ; Cardoso MH; Velikova N; Giesbers M; Wells JM; Rezende TMB; de Vries R; Franco OL
    Sci Rep; 2020 Jun; 10(1):9127. PubMed ID: 32499582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.