These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30624942)

  • 1. Nanoscale Wetting and Energy Transmission at Solid/Liquid Interfaces.
    Tomko JA; Olson DH; Giri A; Gaskins JT; Donovan BF; O'Malley SM; Hopkins PE
    Langmuir; 2019 Feb; 35(6):2106-2114. PubMed ID: 30624942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Simulations of Thermal Transport across Iron Oxide-Hydrocarbon Interfaces.
    Carman F; Ewen JP; Bresme F; Wu B; Dini D
    ACS Appl Mater Interfaces; 2024 Oct; 16(43):59452-59467. PubMed ID: 39405434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal resistance of nanoscopic liquid-liquid interfaces: dependence on chemistry and molecular architecture.
    Patel HA; Garde S; Keblinski P
    Nano Lett; 2005 Nov; 5(11):2225-31. PubMed ID: 16277458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-dimensional harmonic chain model of vibration-mode matching in solid-liquid interfacial thermal transport.
    Matsubara H; Surblys D; Ohara T
    Phys Rev E; 2023 Feb; 107(2-1):024103. PubMed ID: 36932576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation of thermal transport across a solid/liquid interface created by a meniscus.
    Klochko L; Mandrolko V; Castanet G; Pernot G; Lemoine F; Termentzidis K; Lacroix D; Isaiev M
    Phys Chem Chem Phys; 2023 Jan; 25(4):3298-3308. PubMed ID: 36629555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulation of fluid-solid interfaces at nanoscale.
    Ould-Kaddour F; Levesque D
    J Chem Phys; 2011 Dec; 135(22):224705. PubMed ID: 22168717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in the determination of solid surface tensions from contact angles.
    Tavana H; Neumann AW
    Adv Colloid Interface Sci; 2007 Mar; 132(1):1-32. PubMed ID: 17222380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption energy as a metric for wettability at the nanoscale.
    Giro R; Bryant PW; Engel M; Neumann RF; Steiner MB
    Sci Rep; 2017 Apr; 7():46317. PubMed ID: 28397869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mean field approach for computing solid-liquid surface tension for nanoscale interfaces.
    Chiu CC; Ranatunga RJ; Torres Flores D; Pérez DV; Moore PB; Shinoda W; Nielsen SO
    J Chem Phys; 2010 Feb; 132(5):054706. PubMed ID: 20136332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Young's Equation for a Two-Liquid System on the Nanometer Scale.
    Fernandez-Toledano JC; Blake TD; De Coninck J
    Langmuir; 2017 Mar; 33(11):2929-2938. PubMed ID: 28248509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Regimes of Interfacial Thermal Conductance at a Solid/Liquid Interface.
    El-Rifai A; Perumanath S; Borg MK; Pillai R
    J Phys Chem C Nanomater Interfaces; 2024 May; 128(20):8408-8417. PubMed ID: 38807631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces.
    Shenogina N; Godawat R; Keblinski P; Garde S
    Phys Rev Lett; 2009 Apr; 102(15):156101. PubMed ID: 19518653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral mapping of heat transfer mechanisms at liquid-solid interfaces.
    Sääskilahti K; Oksanen J; Tulkki J; Volz S
    Phys Rev E; 2016 May; 93(5):052141. PubMed ID: 27300863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic behavior of nanoscale liquids in graphene liquid cells revealed by in situ transmission electron microscopy.
    Yang J; Alam SB; Yu L; Chan E; Zheng H
    Micron; 2019 Jan; 116():22-29. PubMed ID: 30265880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the water contact layer on hydration and transport at solid/liquid interfaces.
    Gäding J; Della Balda V; Lan J; Konrad J; Iannuzzi M; Meißner RH; Tocci G
    Proc Natl Acad Sci U S A; 2024 Sep; 121(38):e2407877121. PubMed ID: 39259594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Cost Nanostructures from Nanoparticle-Assisted Large-Scale Lithography Significantly Enhance Thermal Energy Transport across Solid Interfaces.
    Lee E; Menumerov E; Hughes RA; Neretina S; Luo T
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34690-34698. PubMed ID: 30209944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical measurement of the picosecond fluid mechanics in simple liquids generated by vibrating nanoparticles: a review.
    Uthe B; Sader JE; Pelton M
    Rep Prog Phys; 2022 Oct; 85(10):. PubMed ID: 36049471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast and Nanoscale Energy Transduction Mechanisms and Coupled Thermal Transport across Interfaces.
    Giri A; Walton SG; Tomko J; Bhatt N; Johnson MJ; Boris DR; Lu G; Caldwell JD; Prezhdo OV; Hopkins PE
    ACS Nano; 2023 Aug; 17(15):14253-14282. PubMed ID: 37459320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.