These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 30624942)
21. Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review. Collins L; Kilpatrick JI; Kalinin SV; Rodriguez BJ Rep Prog Phys; 2018 Aug; 81(8):086101. PubMed ID: 29990308 [TBL] [Abstract][Full Text] [Related]
22. Femtosecond Laser Ablation and Delamination of Functional Magnetic Multilayers at the Nanoscale. Varlamov P; Marx J; Elgueta YU; Ostendorf A; Kim JW; Vavassori P; Temnov V Nanomaterials (Basel); 2024 Sep; 14(18):. PubMed ID: 39330646 [TBL] [Abstract][Full Text] [Related]
23. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface. Surblys D; Leroy F; Yamaguchi Y; Müller-Plathe F J Chem Phys; 2018 Apr; 148(13):134707. PubMed ID: 29626889 [TBL] [Abstract][Full Text] [Related]
24. Direct Imaging of Superwetting Behavior on Solid-Liquid-Vapor Triphase Interfaces. Peng Y; Jin X; Zheng Y; Han D; Liu K; Jiang L Adv Mater; 2017 Dec; 29(45):. PubMed ID: 28869679 [TBL] [Abstract][Full Text] [Related]
25. Correlation of nanoscale behaviour of forces and macroscale surface wettability. Rana A; Patra A; Annamalai M; Srivastava A; Ghosh S; Stoerzinger K; Lee YL; Prakash S; Jueyuan RY; Goohpattader PS; Satyanarayana N; Gopinadhan K; Dykas MM; Poddar K; Saha S; Sarkar T; Kumar B; Bhatia CS; Giordano L; Shao-Horn Y; Venkatesan T Nanoscale; 2016 Aug; 8(34):15597-603. PubMed ID: 27510557 [TBL] [Abstract][Full Text] [Related]
26. Molecular dynamics investigation of surface roughness scale effect on interfacial thermal conductance at solid-liquid interfaces. Surblys D; Kawagoe Y; Shibahara M; Ohara T J Chem Phys; 2019 Mar; 150(11):114705. PubMed ID: 30902019 [TBL] [Abstract][Full Text] [Related]
27. A data driven approach to model thermal boundary resistance from molecular dynamics simulations. Anandakrishnan A; Sathian SP Phys Chem Chem Phys; 2023 Jan; 25(4):3258-3269. PubMed ID: 36625720 [TBL] [Abstract][Full Text] [Related]
28. Nanostructures Significantly Enhance Thermal Transport across Solid Interfaces. Lee E; Zhang T; Yoo T; Guo Z; Luo T ACS Appl Mater Interfaces; 2016 Dec; 8(51):35505-35512. PubMed ID: 27983798 [TBL] [Abstract][Full Text] [Related]
29. Thermal Transport at Solid-Liquid Interfaces: High Pressure Facilitates Heat Flow through Nonlocal Liquid Structuring. Han H; Mérabia S; Müller-Plathe F J Phys Chem Lett; 2017 May; 8(9):1946-1951. PubMed ID: 28403613 [TBL] [Abstract][Full Text] [Related]
30. Quasi-Casimir coupling can induce thermal resonance of adsorbed liquid layers in a nanogap. Chen W; Nagayama G Phys Chem Chem Phys; 2022 May; 24(19):11758-11769. PubMed ID: 35506712 [TBL] [Abstract][Full Text] [Related]
31. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water. Smith RS; Petrik NG; Kimmel GA; Kay BD Acc Chem Res; 2012 Jan; 45(1):33-42. PubMed ID: 21627126 [TBL] [Abstract][Full Text] [Related]
32. Review of non-reactive and reactive wetting of liquids on surfaces. Kumar G; Prabhu KN Adv Colloid Interface Sci; 2007 Jun; 133(2):61-89. PubMed ID: 17560842 [TBL] [Abstract][Full Text] [Related]
33. Pore-Scale Geochemical Reactivity Associated with CO Noiriel C; Daval D Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082 [TBL] [Abstract][Full Text] [Related]
34. Thermal transport mechanism at a solid-liquid interface based on the heat flux detected at a subatomic spatial resolution. Fujiwara K; Shibahara M Phys Rev E; 2022 Mar; 105(3-1):034803. PubMed ID: 35428048 [TBL] [Abstract][Full Text] [Related]
35. Site-Specific Preparation of Intact Solid-Liquid Interfaces by Label-Free In Situ Localization and Cryo-Focused Ion Beam Lift-Out. Zachman MJ; Asenath-Smith E; Estroff LA; Kourkoutis LF Microsc Microanal; 2016 Dec; 22(6):1338-1349. PubMed ID: 27869059 [TBL] [Abstract][Full Text] [Related]
36. Thermal transport across copper-water interfaces according to deep potential molecular dynamics. Li Z; Tan X; Fu Z; Liu L; Yang JY Phys Chem Chem Phys; 2023 Mar; 25(9):6746-6756. PubMed ID: 36807438 [TBL] [Abstract][Full Text] [Related]
37. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Zachman MJ; Tu Z; Choudhury S; Archer LA; Kourkoutis LF Nature; 2018 Aug; 560(7718):345-349. PubMed ID: 30111789 [TBL] [Abstract][Full Text] [Related]
38. A Theoretical Review on Interfacial Thermal Transport at the Nanoscale. Zhang P; Yuan P; Jiang X; Zhai S; Zeng J; Xian Y; Qin H; Yang D Small; 2018 Jan; 14(2):. PubMed ID: 29226601 [TBL] [Abstract][Full Text] [Related]
39. Ordered liquid aluminum at the interface with sapphire. Oh SH; Kauffmann Y; Scheu C; Kaplan WD; Rühle M Science; 2005 Oct; 310(5748):661-3. PubMed ID: 16210498 [TBL] [Abstract][Full Text] [Related]
40. The Effect of Surface Entropy on the Heat of Non-Wetting Liquid Intrusion into Nanopores. Lowe AR; Wong WSY; Tsyrin N; Chorążewski MA; Zaki A; Geppert-Rybczyńska M; Stoudenets V; Tricoli A; Faik A; Grosu Y Langmuir; 2021 Apr; 37(16):4827-4835. PubMed ID: 33844556 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]