BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30624984)

  • 1. Skeletal muscle denervation investigations: selecting an experimental control wisely.
    Liu H; Thompson LV
    Am J Physiol Cell Physiol; 2019 Mar; 316(3):C456-C461. PubMed ID: 30624984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of caspase-3 protects against denervation-induced skeletal muscle atrophy.
    Plant PJ; Bain JR; Correa JE; Woo M; Batt J
    J Appl Physiol (1985); 2009 Jul; 107(1):224-34. PubMed ID: 19390003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of skeletal muscle atrophy by a proteasome inhibitor in a rat model of denervation.
    Beehler BC; Sleph PG; Benmassaoud L; Grover GJ
    Exp Biol Med (Maywood); 2006 Mar; 231(3):335-41. PubMed ID: 16514182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of ubiquitin-proteasome proteolysis in muscle fiber destruction in experimental chloroquine-induced myopathy.
    Kimura N; Kumamoto T; Oniki T; Nomura M; Nakamura K; Abe Y; Hazama Y; Ueyama H
    Muscle Nerve; 2009 Apr; 39(4):521-8. PubMed ID: 19296457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation.
    Wing SS; Haas AL; Goldberg AL
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):639-45. PubMed ID: 7741691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality.
    Baumann CW; Liu HM; Thompson LV
    PLoS One; 2016; 11(8):e0160839. PubMed ID: 27513942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P38α MAPK coordinates the activities of several metabolic pathways that together induce atrophy of denervated muscles.
    Odeh M; Tamir-Livne Y; Haas T; Bengal E
    FEBS J; 2020 Jan; 287(1):73-93. PubMed ID: 31545558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tibial nerve transection - a standardized model for denervation-induced skeletal muscle atrophy in mice.
    Batt JA; Bain JR
    J Vis Exp; 2013 Nov; (81):e50657. PubMed ID: 24300114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy.
    Medina R; Wing SS; Goldberg AL
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):631-7. PubMed ID: 7741690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy.
    Furuno K; Goodman MN; Goldberg AL
    J Biol Chem; 1990 May; 265(15):8550-7. PubMed ID: 2187867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the contributions of protein synthesis and breakdown to muscle atrophy requires non-steady-state equations.
    Kobak KA; Lawrence MM; Pharaoh G; Borowik AK; Peelor FF; Shipman PD; Griffin TM; Van Remmen H; Miller BF
    J Cachexia Sarcopenia Muscle; 2021 Dec; 12(6):1764-1775. PubMed ID: 34418329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium influx during action potential in innervated and denervated rat skeletal muscles.
    Kotsias BA; Venosa RA
    Muscle Nerve; 2001 Aug; 24(8):1026-33. PubMed ID: 11439377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle.
    Siu PM; Alway SE
    J Physiol; 2005 May; 565(Pt 1):309-23. PubMed ID: 15774533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclophilin-D is dispensable for atrophy and mitochondrial apoptotic signalling in denervated muscle.
    Daussin FN; Godin R; Ascah A; Deschênes S; Burelle Y
    J Physiol; 2011 Feb; 589(Pt 4):855-61. PubMed ID: 21224232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation.
    Quy PN; Kuma A; Pierre P; Mizushima N
    J Biol Chem; 2013 Jan; 288(2):1125-34. PubMed ID: 23209294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified expression of vitamin D receptor and CYP27B1 in denervation-induced muscle atrophy.
    Mori R; Yokokawa T; Fujita S
    Biochem Biophys Res Commun; 2020 Aug; 529(3):733-739. PubMed ID: 32736700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Denervation-Induced Activation of the Standard Proteasome and Immunoproteasome.
    Liu HM; Ferrington DA; Baumann CW; Thompson LV
    PLoS One; 2016; 11(11):e0166831. PubMed ID: 27875560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single Muscle Fiber Proteomics Reveals Distinct Protein Changes in Slow and Fast Fibers during Muscle Atrophy.
    Lang F; Khaghani S; Türk C; Wiederstein JL; Hölper S; Piller T; Nogara L; Blaauw B; Günther S; Müller S; Braun T; Krüger M
    J Proteome Res; 2018 Oct; 17(10):3333-3347. PubMed ID: 30142977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HDAC4 preserves skeletal muscle structure following long-term denervation by mediating distinct cellular responses.
    Pigna E; Renzini A; Greco E; Simonazzi E; Fulle S; Mancinelli R; Moresi V; Adamo S
    Skelet Muscle; 2018 Feb; 8(1):6. PubMed ID: 29477142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic changes in the mouse skeletal muscle proteome during denervation-induced atrophy.
    Lang F; Aravamudhan S; Nolte H; Türk C; Hölper S; Müller S; Günther S; Blaauw B; Braun T; Krüger M
    Dis Model Mech; 2017 Jul; 10(7):881-896. PubMed ID: 28546288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.