BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 30625010)

  • 1. Operant conditioning of the motor-evoked potential and locomotion in people with and without chronic incomplete spinal cord injury.
    Thompson AK; Fiorenza G; Smyth L; Favale B; Brangaccio J; Sniffen J
    J Neurophysiol; 2019 Mar; 121(3):853-866. PubMed ID: 30625010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operant conditioning of the tibialis anterior motor evoked potential in people with and without chronic incomplete spinal cord injury.
    Thompson AK; Cote RH; Sniffen JM; Brangaccio JA
    J Neurophysiol; 2018 Dec; 120(6):2745-2760. PubMed ID: 30207863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operant Up-Conditioning of the Tibialis Anterior Motor-Evoked Potential in Multiple Sclerosis: Feasibility Case Studies.
    Thompson AK; Favale BM; Velez J; Falivena P
    Neural Plast; 2018; 2018():4725393. PubMed ID: 30123249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H-reflex conditioning during locomotion in people with spinal cord injury.
    Thompson AK; Wolpaw JR
    J Physiol; 2021 May; 599(9):2453-2469. PubMed ID: 31215646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability of corticospinal and spinal reflex excitability for the ankle dorsiflexor tibialis anterior across repeated measurements in people with and without incomplete spinal cord injury.
    Brangaccio JA; Phipps AM; Gemoets DE; Sniffen JM; Thompson AK
    Exp Brain Res; 2024 Mar; 242(3):727-743. PubMed ID: 38267736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury.
    Urbin MA; Ozdemir RA; Tazoe T; Perez MA
    J Neurophysiol; 2017 Oct; 118(4):2171-2180. PubMed ID: 28468994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operant conditioning to increase ankle control or decrease reflex excitability improves reflex modulation and walking function in chronic spinal cord injury.
    Manella KJ; Roach KE; Field-Fote EC
    J Neurophysiol; 2013 Jun; 109(11):2666-79. PubMed ID: 23468393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repetitive common peroneal nerve stimulation increases ankle dorsiflexor motor evoked potentials in incomplete spinal cord lesions.
    Thompson AK; Lapallo B; Duffield M; Abel BM; Pomerantz F
    Exp Brain Res; 2011 Apr; 210(1):143-52. PubMed ID: 21360230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.
    Roy FD; Yang JF; Gorassini MA
    J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of soleus stretch reflexes during walking in people with chronic incomplete spinal cord injury.
    Thompson AK; Mrachacz-Kersting N; Sinkjær T; Andersen JB
    Exp Brain Res; 2019 Oct; 237(10):2461-2479. PubMed ID: 31309252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transspinal stimulation decreases corticospinal excitability and alters the function of spinal locomotor networks.
    Pulverenti TS; Islam MA; Alsalman O; Murray LM; Harel NY; Knikou M
    J Neurophysiol; 2019 Dec; 122(6):2331-2343. PubMed ID: 31577515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help.
    Thompson AK; Wolpaw JR
    Neuroscientist; 2015 Apr; 21(2):203-15. PubMed ID: 24636954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plantar cutaneous afferents normalize the reflex modulation patterns during stepping in chronic human spinal cord injury.
    Knikou M
    J Neurophysiol; 2010 Mar; 103(3):1304-14. PubMed ID: 20042700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in corticospinal function and ankle motor control during recovery from incomplete spinal cord injury.
    Wirth B; Van Hedel HJ; Curt A
    J Neurotrauma; 2008 May; 25(5):467-78. PubMed ID: 18419251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans.
    Thompson AK; Pomerantz FR; Wolpaw JR
    J Neurosci; 2013 Feb; 33(6):2365-75. PubMed ID: 23392666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury.
    Knikou M
    Exp Brain Res; 2013 Jul; 228(3):279-96. PubMed ID: 23708757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury.
    Thomas SL; Gorassini MA
    J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons.
    Barthélemy D; Willerslev-Olsen M; Lundell H; Conway BA; Knudsen H; Biering-Sørensen F; Nielsen JB
    J Neurophysiol; 2010 Aug; 104(2):1167-76. PubMed ID: 20554839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles.
    Kido Thompson A; Stein RB
    Exp Brain Res; 2004 Dec; 159(4):491-500. PubMed ID: 15243732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.