BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 30625014)

  • 1. Locomotor-related V3 interneurons initiate and coordinate muscles spasms after spinal cord injury.
    Lin S; Li Y; Lucas-Osma AM; Hari K; Stephens MJ; Singla R; Heckman CJ; Zhang Y; Fouad K; Fenrich KK; Bennett DJ
    J Neurophysiol; 2019 Apr; 121(4):1352-1367. PubMed ID: 30625014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bursting interneurons in the deep dorsal horn develop increased excitability and sensitivity to serotonin after chronic spinal injury.
    Thaweerattanasinp T; Birch D; Jiang MC; Tresch MC; Bennett DJ; Heckman CJ; Tysseling VM
    J Neurophysiol; 2020 May; 123(5):1657-1670. PubMed ID: 32208883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice.
    Bellardita C; Caggiano V; Leiras R; Caldeira V; Fuchs A; Bouvier J; Löw P; Kiehn O
    Elife; 2017 Feb; 6():. PubMed ID: 28191872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in sensory-evoked synaptic activation of motoneurons after spinal cord injury in man.
    Norton JA; Bennett DJ; Knash ME; Murray KC; Gorassini MA
    Brain; 2008 Jun; 131(Pt 6):1478-91. PubMed ID: 18344559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle Spasms after Spinal Cord Injury Stem from Changes in Motoneuron Excitability and Synaptic Inhibition, Not Synaptic Excitation.
    Mahrous A; Birch D; Heckman CJ; Tysseling V
    J Neurosci; 2024 Jan; 44(1):. PubMed ID: 37949656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
    Bennett DJ; Sanelli L; Cooke CL; Harvey PJ; Gorassini MA
    J Neurophysiol; 2004 May; 91(5):2247-58. PubMed ID: 15069102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Dmrt3-Derived Neurons Suggest a Role within Locomotor Circuits.
    Perry S; Larhammar M; Vieillard J; Nagaraja C; Hilscher MM; Tafreshiha A; Rofo F; Caixeta FV; Kullander K
    J Neurosci; 2019 Mar; 39(10):1771-1782. PubMed ID: 30578339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of spinal sensory transmission by facilitation of 5-HT1B/D receptors in noninjured and spinal cord-injured humans.
    D'Amico JM; Li Y; Bennett DJ; Gorassini MA
    J Neurophysiol; 2013 Mar; 109(6):1485-93. PubMed ID: 23221401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor-related propriospinal V3 neurons produce primary afferent depolarization and modulate sensory transmission to motoneurons.
    Lin S; Hari K; Black S; Khatmi A; Fouad K; Gorassini MA; Li Y; Lucas-Osma AM; Fenrich KK; Bennett DJ
    J Neurophysiol; 2023 Oct; 130(4):799-823. PubMed ID: 37609680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials?
    Hornby TG; Rymer WZ; Benz EN; Schmit BD
    J Neurophysiol; 2003 Jan; 89(1):416-26. PubMed ID: 12522190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury.
    Züchner M; Kondratskaya E; Sylte CB; Glover JC; Boulland JL
    J Physiol; 2018 Jan; 596(2):281-303. PubMed ID: 29086918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutively active 5-HT2/α1 receptors facilitate muscle spasms after human spinal cord injury.
    D'Amico JM; Murray KC; Li Y; Chan KM; Finlay MG; Bennett DJ; Gorassini MA
    J Neurophysiol; 2013 Mar; 109(6):1473-84. PubMed ID: 23221402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adrenergic receptors modulate motoneuron excitability, sensory synaptic transmission and muscle spasms after chronic spinal cord injury.
    Rank MM; Murray KC; Stephens MJ; D'Amico J; Gorassini MA; Bennett DJ
    J Neurophysiol; 2011 Jan; 105(1):410-22. PubMed ID: 21047936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human spinal cord injury: motor unit properties and behaviour.
    Thomas CK; Bakels R; Klein CS; Zijdewind I
    Acta Physiol (Oxf); 2014 Jan; 210(1):5-19. PubMed ID: 23901835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Firing characteristics of deep dorsal horn neurons after acute spinal transection during administration of agonists for 5-HT1B/1D and NMDA receptors.
    Thaweerattanasinp T; Heckman CJ; Tysseling VM
    J Neurophysiol; 2016 Oct; 116(4):1644-1653. PubMed ID: 27486104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tail spasms in rat spinal cord injury: changes in interneuronal connectivity.
    Kapitza S; Zörner B; Weinmann O; Bolliger M; Filli L; Dietz V; Schwab ME
    Exp Neurol; 2012 Jul; 236(1):179-89. PubMed ID: 22569103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of serotonin in the control of locomotor movements and strategies for restoring locomotion after spinal cord injury.
    Sławińska U; Miazga K; Jordan LM
    Acta Neurobiol Exp (Wars); 2014; 74(2):172-87. PubMed ID: 24993627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
    Danner SM; Wilshin SD; Shevtsova NA; Rybak IA
    J Physiol; 2016 Dec; 594(23):6947-6967. PubMed ID: 27633893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
    Le Gal JP; Juvin L; Cardoit L; Morin D
    J Neurosci; 2016 Jan; 36(3):926-37. PubMed ID: 26791221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor module activation sequence and topography in the spinal cord during air-stepping in human: Insights into the traveling wave in spinal locomotor circuits.
    Yokoyama H; Hagio K; Ogawa T; Nakazawa K
    Physiol Rep; 2017 Nov; 5(22):. PubMed ID: 29180480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.