BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 30625026)

  • 1. Effects of altering histone posttranslational modifications on mitotic chromosome structure and mechanics.
    Biggs R; Liu PZ; Stephens AD; Marko JF
    Mol Biol Cell; 2019 Mar; 30(7):820-827. PubMed ID: 30625026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Priming chromatin for segregation: functional roles of mitotic histone modifications.
    Schmitz ML; Higgins JMG; Seibert M
    Cell Cycle; 2020 Mar; 19(6):625-641. PubMed ID: 31992120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin.
    Sullivan BA; Karpen GH
    Nat Struct Mol Biol; 2004 Nov; 11(11):1076-83. PubMed ID: 15475964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitotic post-translational modifications of histones promote chromatin compaction
    Zhiteneva A; Bonfiglio JJ; Makarov A; Colby T; Vagnarelli P; Schirmer EC; Matic I; Earnshaw WC
    Open Biol; 2017 Sep; 7(9):. PubMed ID: 28903997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects.
    Cimini D; Mattiuzzo M; Torosantucci L; Degrassi F
    Mol Biol Cell; 2003 Sep; 14(9):3821-33. PubMed ID: 12972566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of chromatin structure by histone H3S10 phosphorylation.
    Johansen KM; Johansen J
    Chromosome Res; 2006; 14(4):393-404. PubMed ID: 16821135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA methylation affects nuclear organization, histone modifications, and linker histone binding but not chromatin compaction.
    Gilbert N; Thomson I; Boyle S; Allan J; Ramsahoye B; Bickmore WA
    J Cell Biol; 2007 May; 177(3):401-11. PubMed ID: 17485486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic regulation by histone methylation and histone variants.
    Cheung P; Lau P
    Mol Endocrinol; 2005 Mar; 19(3):563-73. PubMed ID: 15677708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoring chromatin after replication: how new and old histone marks come together.
    Jasencakova Z; Groth A
    Semin Cell Dev Biol; 2010 Apr; 21(2):231-7. PubMed ID: 19815085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone acetylation and chromatin signature in stem cell identity and cancer.
    Shukla V; Vaissière T; Herceg Z
    Mutat Res; 2008 Jan; 637(1-2):1-15. PubMed ID: 17850830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O-GlcNAc transferase regulates mitotic chromatin dynamics.
    Sakabe K; Hart GW
    J Biol Chem; 2010 Nov; 285(45):34460-8. PubMed ID: 20805223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone acetylation increases chromatin accessibility.
    Görisch SM; Wachsmuth M; Tóth KF; Lichter P; Rippe K
    J Cell Sci; 2005 Dec; 118(Pt 24):5825-34. PubMed ID: 16317046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bookmarking by histone methylation ensures chromosomal integrity during mitosis.
    Kim JE
    Arch Pharm Res; 2019 Jun; 42(6):466-480. PubMed ID: 31020544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin modulation and the DNA damage response.
    Costelloe T; Fitzgerald J; Murphy NJ; Flaus A; Lowndes NF
    Exp Cell Res; 2006 Aug; 312(14):2677-86. PubMed ID: 16893724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells.
    Lin S; Yuan ZF; Han Y; Marchione DM; Garcia BA
    J Biol Chem; 2016 Jul; 291(29):15342-57. PubMed ID: 27226594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone modifications and nuclear architecture: a review.
    Bártová E; Krejcí J; Harnicarová A; Galiová G; Kozubek S
    J Histochem Cytochem; 2008 Aug; 56(8):711-21. PubMed ID: 18474937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of histone phosphorylation in chromatin dynamics and its implications in diseases.
    Oki M; Aihara H; Ito T
    Subcell Biochem; 2007; 41():319-36. PubMed ID: 17484134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current understanding and importance of histone phosphorylation in regulating chromatin biology.
    Pérez-Cadahía B; Drobic B; Khan P; Shivashankar CC; Davie JR
    Curr Opin Drug Discov Devel; 2010 Sep; 13(5):613-22. PubMed ID: 20812153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Histone-Modifying Enzymes and Their Complexes in Regulation of Chromatin Biology.
    DesJarlais R; Tummino PJ
    Biochemistry; 2016 Mar; 55(11):1584-99. PubMed ID: 26745824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural-functional model of the mitotic chromosome.
    Polyakov VY; Zatsepina OV; Kireev II; Prusov AN; Fais DI; Sheval EV; Koblyakova YV; Golyshev SA; Chentsov YS
    Biochemistry (Mosc); 2006 Jan; 71(1):1-9. PubMed ID: 16457612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.