BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30625185)

  • 1. Whooping crane use of riverine stopover sites.
    Baasch DM; Farrell PD; Howlin S; Pearse AT; Farnsworth JM; Smith CB
    PLoS One; 2019; 14(1):e0209612. PubMed ID: 30625185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating whooping crane habitat in relation to hydrology, channel morphology and a water-centric management strategy on the central Platte River, Nebraska.
    Farnsworth JM; Baasch DM; Farrell PD; Smith CB; Werbylo KL
    Heliyon; 2018 Oct; 4(10):e00851. PubMed ID: 30364589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of opportunistic sightings and expert knowledge to predict and compare Whooping Crane stopover habitat.
    Hefley TJ; Baasch DM; Tyre AJ; Blankenship EE
    Conserv Biol; 2015 Oct; 29(5):1337-46. PubMed ID: 25926004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Migrating Whooping Cranes avoid wind-energy infrastructure when selecting stopover habitat.
    Pearse AT; Metzger KL; Brandt DA; Shaffer JA; Bidwell MT; Harrell W
    Ecol Appl; 2021 Jul; 31(5):e02324. PubMed ID: 33682273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.
    Belaire JA; Kreakie BJ; Keitt T; Minor E
    Conserv Biol; 2014 Apr; 28(2):541-50. PubMed ID: 24372936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delineating and identifying long-term changes in the whooping crane (Grus americana) migration corridor.
    Pearse AT; Rabbe M; Juliusson LM; Bidwell MT; Craig-Moore L; Brandt DA; Harrell W
    PLoS One; 2018; 13(2):e0192737. PubMed ID: 29447213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrological modelling for siberian crane Grus Leucogeranus stopover sites in northeast China.
    Jiang H; He C; Sheng L; Tang Z; Wen Y; Yan T; Zou C
    PLoS One; 2015; 10(4):e0122687. PubMed ID: 25874552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multi-Scale Approach to Investigating the Red-Crowned Crane-Habitat Relationship in the Yellow River Delta Nature Reserve, China: Implications for Conservation.
    Cao M; Xu H; Le Z; Zhu M; Cao Y
    PLoS One; 2015; 10(6):e0129833. PubMed ID: 26065417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Land Use, anthropogenic disturbance, and riverine features drive patterns of habitat selection by a wintering waterbird in a semi-arid environment.
    Boggie MA; Collins DP; Donnelly JP; Carleton SA
    PLoS One; 2018; 13(11):e0206222. PubMed ID: 30403712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haemosporida prevalence and diversity are similar in endangered wild whooping cranes (Grus americana) and sympatric sandhill cranes (Grus canadensis).
    Bertram MR; Hamer GL; Hartup BK; Snowden KF; Medeiros MC; Hamer SA
    Parasitology; 2017 Apr; 144(5):629-640. PubMed ID: 27938437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Habitat selection of wintering cranes in typical wetlands in the middle and lower reaches of the Yangtze River over the past 20 years, China.
    Gao X; Liang Y; Zhu Y; Zhang K; Ding L; Zhang P; Zhu J
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):58466-58479. PubMed ID: 36988809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Habitat changes in the most important stopover sites for the endangered red-crowned crane in China: a large-scale study.
    Zhou D; Zhang H; Zhang X; Zhang W; Zhang T; Lu C
    Environ Sci Pollut Res Int; 2021 Oct; 28(39):54719-54727. PubMed ID: 34018109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive management on the central Platte River--science, engineering, and decision analysis to assist in the recovery of four species.
    Smith CB
    J Environ Manage; 2011 May; 92(5):1414-9. PubMed ID: 20971546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using stochastic gradient boosting to infer stopover habitat selection and distribution of Hooded Cranes Grus monacha during spring migration in Lindian, Northeast China.
    Cai T; Huettmann F; Guo Y
    PLoS One; 2014; 9(2):e89913. PubMed ID: 24587118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating species-centric and geomorphic-centric views of interior least tern and piping plover habitat selection.
    Farnsworth JM; Baasch DM; Farrell PD
    Heliyon; 2018 Jun; 4(6):e00648. PubMed ID: 30003154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roosting-site Selection by Overwintering Black-necked Cranes in the Caohai Wetland, Guizhou Province, China: Implications for Conservation Management.
    Gou X; Zhu Y; Sun X; Hu C; Zhang M; Khattak RH; Su H
    Zool Stud; 2022; 61():e36. PubMed ID: 36568819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trends in the occurrence of large Whooping Crane groups during migration in the great plains, USA.
    Caven AJ; Rabbe M; Malzahn J; Lacy AE
    Heliyon; 2020 Apr; 6(4):e03549. PubMed ID: 32274427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular detection of Campylobacter spp. and fecal indicator bacteria during the northern migration of sandhill cranes (Grus canadensis) at the central Platte River.
    Lu J; Ryu H; Vogel J; Santo Domingo J; Ashbolt NJ
    Appl Environ Microbiol; 2013 Jun; 79(12):3762-9. PubMed ID: 23584775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Habitat selection of wintering cranes (Gruidae) in typical lake wetland in the lower reaches of the Yangtze River, China.
    Wang C; Dong B; Zhu M; Huang H; Cui YH; Gao X; Liu LP
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):8266-8279. PubMed ID: 30706266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Habitat-dependent changes in vigilance behaviour of Red-crowned Crane influenced by wildlife tourism.
    Li D; Liu Y; Sun X; Lloyd H; Zhu S; Zhang S; Wan D; Zhang Z
    Sci Rep; 2017 Nov; 7(1):16614. PubMed ID: 29192203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.