These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30625260)

  • 1. Cell-Membrane Penetration of Tat-Conjugated Polymeric Micelles: Effect of Tat Coating Density.
    Ming Y; Xiao Y; Tian Y; Zhou S
    Macromol Biosci; 2019 Apr; 19(4):e1800364. PubMed ID: 30625260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide.
    Meerovich I; Muthukrishnan N; Johnson GA; Erazo-Oliveras A; Pellois JP
    Biochim Biophys Acta; 2014 Jan; 1840(1):507-15. PubMed ID: 24135456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles.
    Kanazawa T; Akiyama F; Kakizaki S; Takashima Y; Seta Y
    Biomaterials; 2013 Dec; 34(36):9220-6. PubMed ID: 23992922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel pH-sensitive charge-reversal cell penetrating peptide conjugated PEG-PLA micelles for docetaxel delivery: in vitro study.
    Ouahab A; Cheraga N; Onoja V; Shen Y; Tu J
    Int J Pharm; 2014 May; 466(1-2):233-45. PubMed ID: 24614579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-targeted paclitaxel delivery and enhanced penetration using TAT-decorated liposomes comprising redox-responsive poly(ethylene glycol).
    Fu H; Shi K; Hu G; Yang Y; Kuang Q; Lu L; Zhang L; Chen W; Dong M; Chen Y; He Q
    J Pharm Sci; 2015 Mar; 104(3):1160-73. PubMed ID: 25449709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-pH Sensitive Charge-Reversal Polypeptide Micelles for Tumor-Triggered Targeting Uptake and Nuclear Drug Delivery.
    Han SS; Li ZY; Zhu JY; Han K; Zeng ZY; Hong W; Li WX; Jia HZ; Liu Y; Zhuo RX; Zhang XZ
    Small; 2015 Jun; 11(21):2543-54. PubMed ID: 25626995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell membranes open "doors" for cationic nanoparticles/biomolecules: insights into uptake kinetics.
    Lin J; Alexander-Katz A
    ACS Nano; 2013 Dec; 7(12):10799-808. PubMed ID: 24251827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular Delivery of Nanoparticles with Cell Penetrating Peptides.
    Salzano G; Torchilin VP
    Methods Mol Biol; 2015; 1324():357-68. PubMed ID: 26202282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Immunogenicity of a Cytotoxic T Cell Epitope Delivered by Penetratin and TAT Cell Penetrating Peptides.
    Brooks N; Esparon S; Pouniotis D; Pietersz GA
    Molecules; 2015 Aug; 20(8):14033-50. PubMed ID: 26247926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors.
    Sethuraman VA; Bae YH
    J Control Release; 2007 Apr; 118(2):216-24. PubMed ID: 17239466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles.
    Peetla C; Rao KS; Labhasetwar V
    Mol Pharm; 2009; 6(5):1311-20. PubMed ID: 19243206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-Sensitive nanoparticles as smart carriers for selective intracellular drug delivery to tumor.
    Li XX; Chen J; Shen JM; Zhuang R; Zhang SQ; Zhu ZY; Ma JB
    Int J Pharm; 2018 Jul; 545(1-2):274-285. PubMed ID: 29733971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions.
    Mishra A; Lai GH; Schmidt NW; Sun VZ; Rodriguez AR; Tong R; Tang L; Cheng J; Deming TJ; Kamei DT; Wong GC
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16883-8. PubMed ID: 21969533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular delivery of nanoparticles with CPPs.
    Sawant R; Torchilin V
    Methods Mol Biol; 2011; 683():431-51. PubMed ID: 21053148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide.
    Wang H; Zhong CY; Wu JF; Huang YB; Liu CB
    J Control Release; 2010 Apr; 143(1):64-70. PubMed ID: 20025914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic co-delivery of doxorubicin and paclitaxel using multi-functional micelles for cancer treatment.
    Duong HH; Yung LY
    Int J Pharm; 2013 Sep; 454(1):486-95. PubMed ID: 23792465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-penetrating peptide exploited syndecans.
    Letoha T; Keller-Pintér A; Kusz E; Kolozsi C; Bozsó Z; Tóth G; Vizler C; Oláh Z; Szilák L
    Biochim Biophys Acta; 2010 Dec; 1798(12):2258-65. PubMed ID: 20138023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The global gene-expression profiles of U-937 human macrophages treated with Tat peptide and Tat-FITC conjugate.
    Lin CW; Kuo JH; Jan MS
    J Drug Target; 2012 Jul; 20(6):515-23. PubMed ID: 22632162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The uptake of HIV Tat peptide proceeds via two pathways which differ from macropinocytosis.
    Ben-Dov N; Korenstein R
    Biochim Biophys Acta; 2015 Mar; 1848(3):869-77. PubMed ID: 25542781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.