These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30625451)

  • 1. The 'virtual DBS population': five realistic computational models of deep brain stimulation patients for electromagnetic MR safety studies.
    Guerin B; Iacono MI; Davids M; Dougherty D; Angelone LM; Wald LL
    Phys Med Biol; 2019 Feb; 64(3):035021. PubMed ID: 30625451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies.
    Guerin B; Serano P; Iacono MI; Herrington TM; Widge AS; Dougherty DD; Bonmassar G; Angelone LM; Wald LL
    Phys Med Biol; 2018 May; 63(9):095015. PubMed ID: 29637905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Tesla MRI of deep brain stimulation patients: safety assessment of coils and pulse sequences.
    Boutet A; Hancu I; Saha U; Crawley A; Xu DS; Ranjan M; Hlasny E; Chen R; Foltz W; Sammartino F; Coblentz A; Kucharczyk W; Lozano AM
    J Neurosurg; 2020 Feb; 132(2):586-594. PubMed ID: 30797197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel transmission to reduce absorbed power around deep brain stimulation devices in MRI: Impact of number and arrangement of transmit channels.
    Guerin B; Angelone LM; Dougherty D; Wald LL
    Magn Reson Med; 2020 Jan; 83(1):299-311. PubMed ID: 31389069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-Tesla MRI in patients with fully implanted deep brain stimulation devices: a preliminary study in 10 patients.
    Sammartino F; Krishna V; Sankar T; Fisico J; Kalia SK; Hodaie M; Kucharczyk W; Mikulis DJ; Crawley A; Lozano AM
    J Neurosurg; 2017 Oct; 127(4):892-898. PubMed ID: 28009238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced long-term cost and increased patient satisfaction with rechargeable implantable pulse generators for deep brain stimulation.
    Hitti FL; Vaughan KA; Ramayya AG; McShane BJ; Baltuch GH
    J Neurosurg; 2018 Sep; 131(3):799-806. PubMed ID: 30265199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postoperative lead migration in deep brain stimulation surgery: Incidence, risk factors, and clinical impact.
    Morishita T; Hilliard JD; Okun MS; Neal D; Nestor KA; Peace D; Hozouri AA; Davidson MR; Bova FJ; Sporrer JM; Oyama G; Foote KD
    PLoS One; 2017; 12(9):e0183711. PubMed ID: 28902876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable MRI technology for low-SAR imaging of deep brain stimulation at 3T: Application in bilateral leads, fully-implanted systems, and surgically modified lead trajectories.
    Kazemivalipour E; Keil B; Vali A; Rajan S; Elahi B; Atalar E; Wald LL; Rosenow J; Pilitsis J; Golestanirad L
    Neuroimage; 2019 Oct; 199():18-29. PubMed ID: 31096058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations.
    Horn A; Kühn AA
    Neuroimage; 2015 Feb; 107():127-135. PubMed ID: 25498389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations.
    Kazemivalipour E; Vu J; Lin S; Bhusal B; Thanh Nguyen B; Kirsch J; Elahi B; Rosenow J; Atalar E; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6143-6146. PubMed ID: 33019373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel transmit pulse design for patients with deep brain stimulation implants.
    Eryaman Y; Guerin B; Akgun C; Herraiz JL; Martin A; Torrado-Carvajal A; Malpica N; Hernandez-Tamames JA; Schiavi E; Adalsteinsson E; Wald LL
    Magn Reson Med; 2015 May; 73(5):1896-903. PubMed ID: 24947104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tractography-assisted deep brain stimulation of the superolateral branch of the medial forebrain bundle (slMFB DBS) in major depression.
    Coenen VA; Sajonz B; Reisert M; Bostroem J; Bewernick B; Urbach H; Jenkner C; Reinacher PC; Schlaepfer TE; Mädler B
    Neuroimage Clin; 2018; 20():580-593. PubMed ID: 30186762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation into the minimum number of tissue groups required for 7T in-silico parallel transmit electromagnetic safety simulations in the human head.
    de Buck MHS; Jezzard P; Jeong H; Hess AT
    Magn Reson Med; 2021 Feb; 85(2):1114-1122. PubMed ID: 32845034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A workflow for predicting radiofrequency-induced heating around bilateral deep brain stimulation electrodes in MRI.
    Zulkarnain NIH; Sadeghi-Tarakameh A; Thotland J; Harel N; Eryaman Y
    Med Phys; 2024 Feb; 51(2):1007-1018. PubMed ID: 38153187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety and efficacy of dual-lead thalamic deep brain stimulation for patients with treatment-refractory multiple sclerosis tremor: a single-centre, randomised, single-blind, pilot trial.
    Oliveria SF; Rodriguez RL; Bowers D; Kantor D; Hilliard JD; Monari EH; Scott BM; Okun MS; Foote KD
    Lancet Neurol; 2017 Sep; 16(9):691-700. PubMed ID: 28642125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of simulation strategies on prediction of power deposition in the tissue around electronic implants during magnetic resonance imaging.
    Nguyen BT; Pilitsis J; Golestanirad L
    Phys Med Biol; 2020 Sep; 65(18):185007. PubMed ID: 32756027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A workflow for predicting temperature increase at the electrical contacts of deep brain stimulation electrodes undergoing MRI.
    Sadeghi-Tarakameh A; Zulkarnain NIH; He X; Atalar E; Harel N; Eryaman Y
    Magn Reson Med; 2022 Nov; 88(5):2311-2325. PubMed ID: 35781696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops.
    Golestanirad L; Angelone LM; Iacono MI; Katnani H; Wald LL; Bonmassar G
    Magn Reson Med; 2017 Oct; 78(4):1558-1565. PubMed ID: 27797157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
    Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L
    PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.