BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 30626594)

  • 41. Spatial specificity of auxin responses coordinates wood formation.
    Brackmann K; Qi J; Gebert M; Jouannet V; Schlamp T; Grünwald K; Wallner ES; Novikova DD; Levitsky VG; Agustí J; Sanchez P; Lohmann JU; Greb T
    Nat Commun; 2018 Feb; 9(1):875. PubMed ID: 29491423
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BES1 and BZR1 Redundantly Promote Phloem and Xylem Differentiation.
    Saito M; Kondo Y; Fukuda H
    Plant Cell Physiol; 2018 Mar; 59(3):590-600. PubMed ID: 29385529
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Secondary growth as a determinant of plant shape and form.
    Ragni L; Greb T
    Semin Cell Dev Biol; 2018 Jul; 79():58-67. PubMed ID: 28864343
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Control of cambium initiation and activity in Arabidopsis by the transcriptional regulator AHL15.
    Rahimi A; Karami O; Lestari AD; de Werk T; Amakorová P; Shi D; Novák O; Greb T; Offringa R
    Curr Biol; 2022 Apr; 32(8):1764-1775.e3. PubMed ID: 35294866
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The people behind the papers - Dongbo Shi and Thomas Greb.
    Development; 2019 Jan; 146(1):. PubMed ID: 30626592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl.
    Ikematsu S; Tasaka M; Torii KU; Uchida N
    New Phytol; 2017 Mar; 213(4):1697-1709. PubMed ID: 27891614
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep Imaging Analysis in VISUAL Reveals the Role of YABBY Genes in Vascular Stem Cell Fate Determination.
    Nurani AM; Ozawa Y; Furuya T; Sakamoto Y; Ebine K; Matsunaga S; Ueda T; Fukuda H; Kondo Y
    Plant Cell Physiol; 2020 Feb; 61(2):255-264. PubMed ID: 31922574
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A brief history of the TDIF-PXY signalling module: balancing meristem identity and differentiation during vascular development.
    Etchells JP; Smit ME; Gaudinier A; Williams CJ; Brady SM
    New Phytol; 2016 Jan; 209(2):474-84. PubMed ID: 26414535
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Seasonal development of cambial activity in relation to xylem formation in Chinese fir.
    Wu H; Xu H; Li H; Wei D; Lin J; Li X
    J Plant Physiol; 2016 May; 195():23-30. PubMed ID: 26986869
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of Conserved Gene-Regulatory Networks that Integrate Environmental Sensing and Growth in the Root Cambium.
    Hoang NV; Choe G; Zheng Y; Aliaga Fandino AC; Sung I; Hur J; Kamran M; Park C; Kim H; Ahn H; Kim S; Fei Z; Lee JY
    Curr Biol; 2020 Aug; 30(15):2887-2900.e7. PubMed ID: 32531282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plant vascular development: mechanisms and environmental regulation.
    Agustí J; Blázquez MA
    Cell Mol Life Sci; 2020 Oct; 77(19):3711-3728. PubMed ID: 32193607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division.
    Etchells JP; Turner SR
    Development; 2010 Mar; 137(5):767-74. PubMed ID: 20147378
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vascular Cambium-Localized AtSPDT Mediates Xylem-to-Phloem Transfer of Phosphorus for Its Preferential Distribution in Arabidopsis.
    Ding G; Lei GJ; Yamaji N; Yokosho K; Mitani-Ueno N; Huang S; Ma JF
    Mol Plant; 2020 Jan; 13(1):99-111. PubMed ID: 31610248
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strigolactone signaling regulates cambial activity through repression of WOX4 by transcription factor BES1.
    Hu J; Hu X; Yang Y; He C; Hu J; Wang X
    Plant Physiol; 2022 Jan; 188(1):255-267. PubMed ID: 34687296
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A xylem-produced peptide PtrCLE20 inhibits vascular cambium activity in Populus.
    Zhu Y; Song D; Zhang R; Luo L; Cao S; Huang C; Sun J; Gui J; Li L
    Plant Biotechnol J; 2020 Jan; 18(1):195-206. PubMed ID: 31199056
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automated quantitative histology reveals vascular morphodynamics during Arabidopsis hypocotyl secondary growth.
    Sankar M; Nieminen K; Ragni L; Xenarios I; Hardtke CS
    Elife; 2014 Feb; 3():e01567. PubMed ID: 24520159
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reprogramming of the cambium regulators during adventitious root development upon wounding of storage tap roots in radish (
    Aliaga Fandino AC; Kim H; Rademaker JD; Lee JY
    Biol Open; 2019 Mar; 8(3):. PubMed ID: 30787007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Xylem versus phloem in secondary growth: a balancing act mediated by gibberellins.
    Carlsbecker A; Augstein F
    J Exp Bot; 2021 May; 72(10):3489-3492. PubMed ID: 33948652
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic and hormonal regulation of cambial development.
    Ursache R; Nieminen K; Helariutta Y
    Physiol Plant; 2013 Jan; 147(1):36-45. PubMed ID: 22551327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv.
    Pang Y; Zhang J; Cao J; Yin SY; He XQ; Cui KM
    J Exp Bot; 2008; 59(6):1341-51. PubMed ID: 18375933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.