These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30626878)

  • 1. A miniature multi-contrast microscope for functional imaging in freely behaving animals.
    Senarathna J; Yu H; Deng C; Zou AL; Issa JB; Hadjiabadi DH; Gil S; Wang Q; Tyler BM; Thakor NV; Pathak AP
    Nat Commun; 2019 Jan; 10(1):99. PubMed ID: 30626878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extendable, miniaturized multi-modal optical imaging system: cortical hemodynamic observation in freely moving animals.
    Liu R; Huang Q; Li B; Yin C; Jiang C; Wang J; Lu J; Luo Q; Li P
    Opt Express; 2013 Jan; 21(2):1911-24. PubMed ID: 23389174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging.
    Zong W; Wu R; Chen S; Wu J; Wang H; Zhao Z; Chen G; Tu R; Wu D; Hu Y; Xu Y; Wang Y; Duan Z; Wu H; Zhang Y; Zhang J; Wang A; Chen L; Cheng H
    Nat Methods; 2021 Jan; 18(1):46-49. PubMed ID: 33408404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniaturized photoacoustic microscope for multi-segmental spinal cord imaging in freely moving mice.
    Li B; Qi W; Guo H; Xi L
    Opt Lett; 2024 Oct; 49(20):5909-5912. PubMed ID: 39404569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniaturized microscope with flexible light source input for neuronal imaging and manipulation in freely behaving animals.
    Srinivasan S; Hosokawa T; Vergara P; Chérasse Y; Naoi T; Sakurai T; Sakaguchi M
    Biochem Biophys Res Commun; 2019 Sep; 517(3):520-524. PubMed ID: 31376934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skin suturing and cortical surface viral infusion improves imaging of neuronal ensemble activity with head-mounted miniature microscopes.
    Li X; Cao VY; Zhang W; Mastwal SS; Liu Q; Otte S; Wang KH
    J Neurosci Methods; 2017 Nov; 291():238-248. PubMed ID: 28830724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice.
    Zong W; Wu R; Li M; Hu Y; Li Y; Li J; Rong H; Wu H; Xu Y; Lu Y; Jia H; Fan M; Zhou Z; Zhang Y; Wang A; Chen L; Cheng H
    Nat Methods; 2017 Jul; 14(7):713-719. PubMed ID: 28553965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Successful In vivo Calcium Imaging with a Head-Mount Miniaturized Microscope in the Amygdala of Freely Behaving Mouse.
    Lee HS; Han JH
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32925887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized optical neuroimaging in unrestrained animals.
    Yu H; Senarathna J; Tyler BM; Thakor NV; Pathak AP
    Neuroimage; 2015 Jun; 113():397-406. PubMed ID: 25791782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated semiconductor optical sensors for chronic, minimally-invasive imaging of brain function.
    Lee TT; Levi O; Cang J; Kaneko M; Stryker MP; Smith SJ; Shenoy KV; Harris JS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1025-8. PubMed ID: 17946016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-layer Cortical Ca2+ Imaging in Freely Moving Mice with Prism Probes and Miniaturized Fluorescence Microscopy.
    Gulati S; Cao VY; Otte S
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A miniaturized platform for laser speckle contrast imaging.
    Senarathna J; Murari K; Etienne-Cummings R; Thakor NV
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):437-45. PubMed ID: 23853230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Postnatal Expansion of Neural Networks Occurs in an Environment of Altered Neurovascular and Neurometabolic Coupling.
    Kozberg MG; Ma Y; Shaik MA; Kim SH; Hillman EM
    J Neurosci; 2016 Jun; 36(25):6704-17. PubMed ID: 27335402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time imaging of brain activity in freely moving rats using functional ultrasound.
    Urban A; Dussaux C; Martel G; Brunner C; Mace E; Montaldo G
    Nat Methods; 2015 Sep; 12(9):873-8. PubMed ID: 26192084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo.
    Engelbrecht CJ; Johnston RS; Seibel EJ; Helmchen F
    Opt Express; 2008 Apr; 16(8):5556-64. PubMed ID: 18542658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modular head-mounted cortical imaging device for chronic monitoring of intrinsic signals in mice.
    Guinto MC; Haruta M; Kurauchi Y; Saigo T; Kurasawa K; Ryu S; Ohta Y; Kawahara M; Takehara H; Tashiro H; Sasagawa K; Katsuki H; Ohta J
    J Biomed Opt; 2022 Feb; 27(2):. PubMed ID: 35166087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering Brain Function by Miniaturized Fluorescence Microscopy in Freely Behaving Animals.
    Malvaut S; Constantinescu VS; Dehez H; Doric S; Saghatelyan A
    Front Neurosci; 2020; 14():819. PubMed ID: 32848576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term optical imaging of neurovascular coupling in mouse cortex using GCaMP6f and intrinsic hemodynamic signals.
    Gu X; Chen W; You J; Koretsky AP; Volkow ND; Pan Y; Du C
    Neuroimage; 2018 Jan; 165():251-264. PubMed ID: 28974452
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.