These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30627135)

  • 1. Prediction of Means and Variances of Crosses With Genome-Wide Marker Effects in Barley.
    Osthushenrich T; Frisch M; Zenke-Philippi C; Jaiser H; Spiller M; Cselényi L; Krumnacker K; Boxberger S; Kopahnke D; Habekuß A; Ordon F; Herzog E
    Front Plant Sci; 2018; 9():1899. PubMed ID: 30627135
    [No Abstract]   [Full Text] [Related]  

  • 2. Genetic Gain Increases by Applying the Usefulness Criterion with Improved Variance Prediction in Selection of Crosses.
    Lehermeier C; Teyssèdre S; Schön CC
    Genetics; 2017 Dec; 207(4):1651-1661. PubMed ID: 29038144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic predictions of genetic variances and correlations among traits for breeding crosses in soybean.
    Wartha CA; Lorenz AJ
    Heredity (Edinb); 2024 Jul; ():. PubMed ID: 38997517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic mating in outbred species: predicting cross usefulness with additive and total genetic covariance matrices.
    Wolfe MD; Chan AW; Kulakow P; Rabbi I; Jannink JL
    Genetics; 2021 Nov; 219(3):. PubMed ID: 34740244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic selection of crossing partners on basis of the expected mean and variance of their derived lines.
    Osthushenrich T; Frisch M; Herzog E
    PLoS One; 2017; 12(12):e0188839. PubMed ID: 29200436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for Selecting Crosses Using Genomic Prediction in Two Wheat Breeding Programs.
    Lado B; Battenfield S; Guzmán C; Quincke M; Singh RP; Dreisigacker S; Peña RJ; Fritz A; Silva P; Poland J; Gutiérrez L
    Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic Prediction Can Provide Precise Estimates of the Genotypic Value of Barley Lines Evaluated in Unreplicated Trials.
    Terraillon J; Frisch M; Falke KC; Jaiser H; Spiller M; Cselényi L; Krumnacker K; Boxberger S; Habekuß A; Kopahnke D; Serfling A; Ordon F; Zenke-Philippi C
    Front Plant Sci; 2022; 13():735256. PubMed ID: 35528936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic prediction of optimal cross combinations to accelerate genetic improvement of soybean (
    Miller MJ; Song Q; Fallen B; Li Z
    Front Plant Sci; 2023; 14():1171135. PubMed ID: 37235007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usefulness Criterion and Post-selection Parental Contributions in Multi-parental Crosses: Application to Polygenic Trait Introgression.
    Allier A; Moreau L; Charcosset A; Teyssèdre S; Lehermeier C
    G3 (Bethesda); 2019 May; 9(5):1469-1479. PubMed ID: 30819823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Potential of Genome-Wide Prediction to Support Parental Selection, Evaluated with Data from a Commercial Barley Breeding Program.
    Rembe M; Zhao Y; Wendler N; Oldach K; Korzun V; Reif JC
    Plants (Basel); 2022 Sep; 11(19):. PubMed ID: 36235430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of testcross means and variances among F3 progenies of F1 crosses from testcross means and genetic distances of their parents in maize.
    Melchinger AE; Gumber RK; Leipert RB; Vuylsteke M; Kuiper M
    Theor Appl Genet; 1998 Mar; 96(3-4):503-12. PubMed ID: 24710890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Prediction Within and Across Biparental Families: Means and Variances of Prediction Accuracy and Usefulness of Deterministic Equations.
    Schopp P; Müller D; Wientjes YCJ; Melchinger AE
    G3 (Bethesda); 2017 Nov; 7(11):3571-3586. PubMed ID: 28916649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of genomic-enabled cross selection criteria for the improvement of inbred line breeding populations.
    Danguy des Déserts A; Durand N; Servin B; Goudemand-Dugué E; Alliot JM; Ruiz D; Charmet G; Elsen JM; Bouchet S
    G3 (Bethesda); 2023 Nov; 13(11):. PubMed ID: 37625792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications.
    Bouvet JM; Makouanzi G; Cros D; Vigneron P
    Heredity (Edinb); 2016 Feb; 116(2):146-57. PubMed ID: 26328760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the potential of sugarcane families to produce elite genotypes using bivariate prediction methods.
    Chang YS; Milligan SB
    Theor Appl Genet; 1992 Aug; 84(5-6):633-9. PubMed ID: 24201351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments.
    Kumar S; Molloy C; Muñoz P; Daetwyler H; Chagné D; Volz R
    G3 (Bethesda); 2015 Oct; 5(12):2711-8. PubMed ID: 26497141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances.
    Su G; Christensen OF; Janss L; Lund MS
    J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat.
    Ovenden B; Milgate A; Wade LJ; Rebetzke GJ; Holland JB
    G3 (Bethesda); 2018 May; 8(6):1909-1919. PubMed ID: 29661842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variance of gametic diversity and its application in selection programs.
    Santos DJA; Cole JB; Lawlor TJ; VanRaden PM; Tonhati H; Ma L
    J Dairy Sci; 2019 Jun; 102(6):5279-5294. PubMed ID: 30981488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting segregation of multiple fruit-quality traits by using accumulated phenotypic records in citrus breeding.
    Imai A; Kuniga T; Yoshioka T; Nonaka K; Mitani N; Fukamachi H; Hiehata N; Yamamoto M; Hayashi T
    PLoS One; 2018; 13(8):e0202341. PubMed ID: 30114283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.