BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30627216)

  • 1. A Systematic Review of Continuum Modeling of Skeletal Muscles: Current Trends, Limitations, and Recommendations.
    Dao TT; Tho MHB
    Appl Bionics Biomech; 2018; 2018():7631818. PubMed ID: 30627216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of active skeletal muscles: a 3D continuum approach incorporating multiple muscle interactions.
    Zeng W; Hume DR; Lu Y; Fitzpatrick CK; Babcock C; Myers CA; Rullkoetter PJ; Shelburne KB
    Front Bioeng Biotechnol; 2023; 11():1153692. PubMed ID: 37274172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Physiology-Guided Classification of Active-Stress and Active-Strain Approaches for Continuum-Mechanical Modeling of Skeletal Muscle Tissue.
    Klotz T; Bleiler C; Röhrle O
    Front Physiol; 2021; 12():685531. PubMed ID: 34408657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale modeling of skeletal muscle tissues based on analytical and numerical homogenization.
    Spyrou LA; Brisard S; Danas K
    J Mech Behav Biomed Mater; 2019 Apr; 92():97-117. PubMed ID: 30677705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle mechanics, energetics and plasticity.
    Lieber RL; Roberts TJ; Blemker SS; Lee SSM; Herzog W
    J Neuroeng Rehabil; 2017 Oct; 14(1):108. PubMed ID: 29058612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale modeling of the neuromuscular system: Coupling neurophysiology and skeletal muscle mechanics.
    Röhrle O; Yavuz UŞ; Klotz T; Negro F; Heidlauf T
    Wiley Interdiscip Rev Syst Biol Med; 2019 Nov; 11(6):e1457. PubMed ID: 31237041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of muscle activation for an eye movement with finite element modeling.
    Karami A; Eghtesad M; Haghpanah SA
    Comput Biol Med; 2017 Oct; 89():368-378. PubMed ID: 28865348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles.
    Li J; Lu Y; Miller SC; Jin Z; Hua X
    J Biomech; 2019 Sep; 94():230-234. PubMed ID: 31421809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft palate muscle activation: a modeling approach for improved understanding of obstructive sleep apnea.
    Liu H; Prot VE; Skallerud BH
    Biomech Model Mechanobiol; 2019 Jun; 18(3):531-546. PubMed ID: 30511264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Electromechanical Delay Based on a Biophysical Multi-Scale Skeletal Muscle Model.
    Schmid L; Klotz T; Siebert T; Röhrle O
    Front Physiol; 2019; 10():1270. PubMed ID: 31649554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle.
    Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B
    Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modern Theories of Pelvic Floor Support : A Topical Review of Modern Studies on Structural and Functional Pelvic Floor Support from Medical Imaging, Computational Modeling, and Electromyographic Perspectives.
    Peng Y; Miller BD; Boone TB; Zhang Y
    Curr Urol Rep; 2018 Feb; 19(1):9. PubMed ID: 29435856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A validated model of passive skeletal muscle to predict force and intramuscular pressure.
    Wheatley BB; Odegard GM; Kaufman KR; Haut Donahue TL
    Biomech Model Mechanobiol; 2017 Jun; 16(3):1011-1022. PubMed ID: 28040867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction.
    Heidlauf T; Klotz T; Rode C; Altan E; Bleiler C; Siebert T; Röhrle O
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1423-1437. PubMed ID: 26935301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the passive mechanical behaviour of skeletal muscle fibres: Micromechanical experiments and Bayesian hierarchical modelling.
    Böl M; Iyer R; Dittmann J; Garcés-Schröder M; Dietzel A
    Acta Biomater; 2019 Jul; 92():277-289. PubMed ID: 31077887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel constitutive model of skeletal muscle taking into account anisotropic damage.
    Ito D; Tanaka E; Yamamoto S
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):85-93. PubMed ID: 19878905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model.
    Khodaei H; Mostofizadeh S; Brolin K; Johansson H; Osth J
    Proc Inst Mech Eng H; 2013 May; 227(5):571-80. PubMed ID: 23637267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-muscle, continuum-mechanical forward simulation of the upper limb.
    Röhrle O; Sprenger M; Schmitt S
    Biomech Model Mechanobiol; 2017 Jun; 16(3):743-762. PubMed ID: 27837360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On a three-dimensional constitutive model for history effects in skeletal muscles.
    Seydewitz R; Siebert T; Böl M
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1665-1681. PubMed ID: 31102082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.