These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30627216)

  • 21. Contemporary image-based methods for measuring passive mechanical properties of skeletal muscles in vivo.
    Bilston LE; Bolsterlee B; Nordez A; Sinha S
    J Appl Physiol (1985); 2019 May; 126(5):1454-1464. PubMed ID: 30236053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review.
    Babakhani P; Bridge J; Doong RA; Phenrat T
    Adv Colloid Interface Sci; 2017 Aug; 246():75-104. PubMed ID: 28641812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promoting and supporting self-management for adults living in the community with physical chronic illness: A systematic review of the effectiveness and meaningfulness of the patient-practitioner encounter.
    Rees S; Williams A
    JBI Libr Syst Rev; 2009; 7(13):492-582. PubMed ID: 27819974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling.
    Hume DR; Navacchia A; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():153-160. PubMed ID: 30630624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model.
    Yucesoy CA; Koopman BH; Huijing PA; Grootenboer HJ
    J Biomech; 2002 Sep; 35(9):1253-62. PubMed ID: 12163314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Twente spine model: A complete and coherent dataset for musculo-skeletal modeling of the lumbar region of the human spine.
    Bayoglu R; Geeraedts L; Groenen KHJ; Verdonschot N; Koopman B; Homminga J
    J Biomech; 2017 Feb; 53():111-119. PubMed ID: 28131485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A physically motivated constitutive model for 3D numerical simulation of skeletal muscles.
    Weickenmeier J; Itskov M; Mazza E; Jabareen M
    Int J Numer Method Biomed Eng; 2014 May; 30(5):545-62. PubMed ID: 24421263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A threshold and continuum of injury during active stretch of rabbit skeletal muscle.
    Hasselman CT; Best TM; Seaber AV; Garrett WE
    Am J Sports Med; 1995; 23(1):65-73. PubMed ID: 7726353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour.
    Tang CY; Zhang G; Tsui CP
    J Biomech; 2009 May; 42(7):865-72. PubMed ID: 19264310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts.
    Hedenstierna S; Halldin P
    Spine (Phila Pa 1976); 2008 Apr; 33(8):E236-45. PubMed ID: 18404093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of intramuscular fiber orientation on the Achilles tendon curvature using three-dimensional finite element modeling of contracting skeletal muscle.
    Kinugasa R; Yamamura N; Sinha S; Takagi S
    J Biomech; 2016 Oct; 49(14):3592-3595. PubMed ID: 27663620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of biophysical muscle properties on simulating fast human arm movements.
    Bayer A; Schmitt S; Günther M; Haeufle DFB
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):803-821. PubMed ID: 28387534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology.
    Sandage MJ; Smith AG
    J Speech Lang Hear Res; 2017 May; 60(5):1254-1263. PubMed ID: 28505224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A framework for structured modeling of skeletal muscle.
    Lemos RR; Epstein M; Herzog W; Wyvill B
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):305-17. PubMed ID: 15621651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic prediction of tongue muscle activations using a finite element model.
    Stavness I; Lloyd JE; Fels S
    J Biomech; 2012 Nov; 45(16):2841-8. PubMed ID: 23021611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling Skeletal Muscle Stress and Intramuscular Pressure: A Whole Muscle Active-Passive Approach.
    Wheatley BB; Odegard GM; Kaufman KR; Haut Donahue TL
    J Biomech Eng; 2018 Aug; 140(8):0810061-8. PubMed ID: 30003256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models.
    Blemker SS; Delp SL
    J Biomech; 2006; 39(8):1383-91. PubMed ID: 15972213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mathematical model on stress-strain of the epimysium of skeletal muscles.
    Xi M; Yun G; Narsu B
    J Theor Biol; 2015 Jan; 365():175-80. PubMed ID: 25167791
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.