These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 30627701)
1. Redkmer: An Assembly-Free Pipeline for the Identification of Abundant and Specific X-Chromosome Target Sequences for X-Shredding by CRISPR Endonucleases. Papathanos PA; Windbichler N CRISPR J; 2018 Feb; 1(1):88-98. PubMed ID: 30627701 [TBL] [Abstract][Full Text] [Related]
2. Engineered sex ratio distortion by X-shredding in the global agricultural pest Ceratitis capitata. Meccariello A; Krsticevic F; Colonna R; Del Corsano G; Fasulo B; Papathanos PA; Windbichler N BMC Biol; 2021 Apr; 19(1):78. PubMed ID: 33863334 [TBL] [Abstract][Full Text] [Related]
3. Developing CRISPR-based sex-ratio distorters for the genetic control of fruit fly pests: A how to manual. Tsoumani KT; Meccariello A; Mathiopoulos KD; Papathanos PA Arch Insect Biochem Physiol; 2020 Mar; 103(3):e21652. PubMed ID: 31845410 [TBL] [Abstract][Full Text] [Related]
4. A fly model establishes distinct mechanisms for synthetic CRISPR/Cas9 sex distorters. Fasulo B; Meccariello A; Morgan M; Borufka C; Papathanos PA; Windbichler N PLoS Genet; 2020 Mar; 16(3):e1008647. PubMed ID: 32168334 [TBL] [Abstract][Full Text] [Related]
5. Y chromosome shredding in Anopheles gambiae: Insight into the cellular dynamics of a novel synthetic sex ratio distorter. Vitale M; Kranjc N; Leigh J; Kyrou K; Courty T; Marston L; Grilli S; Crisanti A; Bernardini F PLoS Genet; 2024 Jun; 20(6):e1011303. PubMed ID: 38848445 [TBL] [Abstract][Full Text] [Related]
7. The Potential for a Released Autosomal X-Shredder Becoming a Driving-Y Chromosome and Invasively Suppressing Wild Populations of Malaria Mosquitoes. Alcalay Y; Fuchs S; Galizi R; Bernardini F; Haghighat-Khah RE; Rusch DB; Adrion JR; Hahn MW; Tortosa P; Rotenberry R; Papathanos PA Front Bioeng Biotechnol; 2021; 9():752253. PubMed ID: 34957064 [TBL] [Abstract][Full Text] [Related]
8. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Galizi R; Doyle LA; Menichelli M; Bernardini F; Deredec A; Burt A; Stoddard BL; Windbichler N; Crisanti A Nat Commun; 2014 Jun; 5():3977. PubMed ID: 24915045 [TBL] [Abstract][Full Text] [Related]
9. Targeting mosquito X-chromosomes reveals complex transmission dynamics of sex ratio distorting gene drives. Haber DA; Arien Y; Lamdan LB; Alcalay Y; Zecharia C; Krsticevic F; Yonah ES; Avraham RD; Krzywinska E; Krzywinski J; Marois E; Windbichler N; Papathanos PA Nat Commun; 2024 Jun; 15(1):4983. PubMed ID: 38862555 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of Y chromosome sequences from the African malaria mosquito Anopheles gambiae. Krzywinski J; Nusskern DR; Kern MK; Besansky NJ Genetics; 2004 Mar; 166(3):1291-302. PubMed ID: 15082548 [TBL] [Abstract][Full Text] [Related]
11. Introgression of a synthetic sex ratio distortion system from Anopheles gambiae into Anopheles arabiensis. Bernardini F; Kriezis A; Galizi R; Nolan T; Crisanti A Sci Rep; 2019 Mar; 9(1):5158. PubMed ID: 30914785 [TBL] [Abstract][Full Text] [Related]
12. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. Windbichler N; Papathanos PA; Crisanti A PLoS Genet; 2008 Dec; 4(12):e1000291. PubMed ID: 19057670 [TBL] [Abstract][Full Text] [Related]
13. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Simoni A; Hammond AM; Beaghton AK; Galizi R; Taxiarchi C; Kyrou K; Meacci D; Gribble M; Morselli G; Burt A; Nolan T; Crisanti A Nat Biotechnol; 2020 Sep; 38(9):1054-1060. PubMed ID: 32393821 [TBL] [Abstract][Full Text] [Related]
14. Six novel Y chromosome genes in Anopheles mosquitoes discovered by independently sequencing males and females. Hall AB; Qi Y; Timoshevskiy V; Sharakhova MV; Sharakhov IV; Tu Z BMC Genomics; 2013 Apr; 14():273. PubMed ID: 23617698 [TBL] [Abstract][Full Text] [Related]
15. Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes. Xia A; Sharakhova MV; Leman SC; Tu Z; Bailey JA; Smith CD; Sharakhov IV PLoS One; 2010 May; 5(5):e10592. PubMed ID: 20485676 [TBL] [Abstract][Full Text] [Related]
16. Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi. Jiang X; Peery A; Hall AB; Sharma A; Chen XG; Waterhouse RM; Komissarov A; Riehle MM; Shouche Y; Sharakhova MV; Lawson D; Pakpour N; Arensburger P; Davidson VL; Eiglmeier K; Emrich S; George P; Kennedy RC; Mane SP; Maslen G; Oringanje C; Qi Y; Settlage R; Tojo M; Tubio JM; Unger MF; Wang B; Vernick KD; Ribeiro JM; James AA; Michel K; Riehle MA; Luckhart S; Sharakhov IV; Tu Z Genome Biol; 2014 Sep; 15(9):459. PubMed ID: 25244985 [TBL] [Abstract][Full Text] [Related]
17. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure. Soriano V AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352 [TBL] [Abstract][Full Text] [Related]
18. Heterochromatin-Enriched Assemblies Reveal the Sequence and Organization of the Chang CH; Larracuente AM Genetics; 2019 Jan; 211(1):333-348. PubMed ID: 30420487 [TBL] [Abstract][Full Text] [Related]
19. Chromosome inversions, genomic differentiation and speciation in the African malaria mosquito Anopheles gambiae. Lee Y; Collier TC; Sanford MR; Marsden CD; Fofana A; Cornel AJ; Lanzaro GC PLoS One; 2013; 8(3):e57887. PubMed ID: 23526957 [TBL] [Abstract][Full Text] [Related]
20. Comparative analysis of BAC and whole genome shotgun sequences from an Anopheles gambiae region related to Plasmodium encapsulation. Eiglmeier K; Wincker P; Cattolico L; Anthouard V; Holm I; Eckenberg R; Quesneville H; Jaillon O; Collins FH; Weissenbach J; Brey PT; Roth CW Insect Biochem Mol Biol; 2005 Aug; 35(8):799-814. PubMed ID: 15944077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]