These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 30627770)

  • 21. The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana.
    Ma J; Wang LY; Dai JX; Wang Y; Lin D
    BMC Plant Biol; 2021 Jan; 21(1):11. PubMed ID: 33407148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L.
    Zhu G; Chen G; Zhu J; Zhu Y; Lu X; Li X; Hu Y; Yan Y
    PLoS One; 2015; 10(10):e0139794. PubMed ID: 26444425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA expression profiles in response to drought stress in Sorghum bicolor.
    Hamza NB; Sharma N; Tripathi A; Sanan-Mishra N
    Gene Expr Patterns; 2016 Mar; 20(2):88-98. PubMed ID: 26772909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-Wide Analyses of the NAC Transcription Factor Gene Family in Pepper (Capsicum annuum L.): Chromosome Location, Phylogeny, Structure, Expression Patterns, Cis-Elements in the Promoter, and Interaction Network.
    Diao W; Snyder JC; Wang S; Liu J; Pan B; Guo G; Ge W; Dawood MHSA
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29596349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress.
    Sanjari S; Shobbar ZS; Ghanati F; Afshari-Behbahanizadeh S; Farajpour M; Jokar M; Khazaei A; Shahbazi M
    Plant Physiol Biochem; 2021 Feb; 159():383-391. PubMed ID: 33450508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-Wide Analysis of C2H2 Zinc Finger Gene Family and Its Response to Cold and Drought Stress in Sorghum [
    Cui H; Chen J; Liu M; Zhang H; Zhang S; Liu D; Chen S
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wide-ranging transcriptome remodelling mediated by alternative polyadenylation in response to abiotic stresses in Sorghum.
    Chakrabarti M; de Lorenzo L; Abdel-Ghany SE; Reddy ASN; Hunt AG
    Plant J; 2020 Jun; 102(5):916-930. PubMed ID: 31909843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid.
    Dugas DV; Monaco MK; Olsen A; Klein RR; Kumari S; Ware D; Klein PE
    BMC Genomics; 2011 Oct; 12():514. PubMed ID: 22008187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sorghum stem aerenchyma formation is regulated by
    Casto AL; McKinley BA; Yu KMJ; Rooney WL; Mullet JE
    Plant Direct; 2018 Nov; 2(11):e00085. PubMed ID: 31245693
    [No Abstract]   [Full Text] [Related]  

  • 30. A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance.
    Li XL; Yang X; Hu YX; Yu XD; Li QL
    Plant Cell Rep; 2014 May; 33(5):767-78. PubMed ID: 24682461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revealing critical mechanisms in determining sorghum resistance to drought and salt using mRNA, small RNA and degradome sequencing.
    Li Q; Wang J; Liu Q; Zhang J; Zhu X; Hua Y; Zhou T; Yan S
    BMC Plant Biol; 2024 Jun; 24(1):547. PubMed ID: 38872092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative and population genomics suggest a broad role of stay-green loci in the drought adaptation of sorghum.
    Faye JM; Akata EA; Sine B; Diatta C; Cisse N; Fonceka D; Morris GP
    Plant Genome; 2022 Mar; 15(1):e20176. PubMed ID: 34817118
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Sato H; Takasaki H; Takahashi F; Suzuki T; Iuchi S; Mitsuda N; Ohme-Takagi M; Ikeda M; Seo M; Yamaguchi-Shinozaki K; Shinozaki K
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):E11178-E11187. PubMed ID: 30397148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide characterization of drought-responsive long non-coding RNAs in sorghum (Sorghum bicolor).
    Zou C; Zhao S; Yang B; Chai W; Zhu L; Zhang C; Gai Z
    Plant Physiol Biochem; 2024 Sep; 214():108908. PubMed ID: 38976942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation.
    Zhou M; Zhao B; Li H; Ren W; Zhang Q; Liu Y; Zhao J
    Genomics; 2022 Mar; 114(2):110311. PubMed ID: 35176445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential responses of sorghum genotypes to drought stress revealed by physio-chemical and transcriptional analysis.
    Rajarajan K; Ganesamurthy K; Raveendran M; Jeyakumar P; Yuvaraja A; Sampath P; Prathima PT; Senthilraja C
    Mol Biol Rep; 2021 Mar; 48(3):2453-2462. PubMed ID: 33755850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Method for Rapid and Reliable Molecular Detection of Drought-Response Genes in Sorghum bicolor (L.) Moench Roots.
    Fontanet-Manzaneque JB; Blasco-Escámez D; Martignago D; Rico-Medina A; Caño-Delgado AI
    Methods Mol Biol; 2022; 2539():223-233. PubMed ID: 35895207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying differentially expressed proteins in sorghum cell cultures exposed to osmotic stress.
    Ngara R; Ramulifho E; Movahedi M; Shargie NG; Brown AP; Chivasa S
    Sci Rep; 2018 Jun; 8(1):8671. PubMed ID: 29875393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico targeted genome mining and comparative modelling reveals a putative protein similar to an Arabidopsis drought tolerance DNA binding transcription factor in Chromosome 6 of Sorghum bicolor genome.
    Shanker AK; Maddaala A; Kumar MA; Yadav SK; Maheswari M; Venkateswarlu B
    Interdiscip Sci; 2012 Jun; 4(2):133-41. PubMed ID: 22843236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis.
    Yang X; Wang X; Ji L; Yi Z; Fu C; Ran J; Hu R; Zhou G
    Plant Cell Rep; 2015 Jun; 34(6):943-58. PubMed ID: 25666276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.