These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 30627864)
1. Voltammetric kanamycin aptasensor based on the use of thionine incorporated into Au@Pt core-shell nanoparticles. He B; Yan S Mikrochim Acta; 2019 Jan; 186(2):77. PubMed ID: 30627864 [TBL] [Abstract][Full Text] [Related]
2. A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Qin X; Yin Y; Yu H; Guo W; Pei M Biosens Bioelectron; 2016 Mar; 77():752-8. PubMed ID: 26513281 [TBL] [Abstract][Full Text] [Related]
3. Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor. Jiang Y; Sun DW; Pu H; Wei Q Talanta; 2019 May; 197():151-158. PubMed ID: 30771917 [TBL] [Abstract][Full Text] [Related]
4. Ratiometric Dual Signal-Enhancing-Based Electrochemical Biosensor for Ultrasensitive Kanamycin Detection. Tian L; Zhang Y; Wang L; Geng Q; Liu D; Duan L; Wang Y; Cui J ACS Appl Mater Interfaces; 2020 Nov; 12(47):52713-52720. PubMed ID: 33170623 [TBL] [Abstract][Full Text] [Related]
5. Impedimetric aptasensor for kanamycin by using carbon nanotubes modified with MoSe Azadbakht A; Abbasi AR Mikrochim Acta; 2018 Dec; 186(1):23. PubMed ID: 30560387 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic electrophoretic non-enzymatic kanamycin assay making use of a stirring bar functionalized with gold-labeled aptamer, of a fluorescent DNA probe, and of signal amplification via hybridization chain reaction. Zhang K; Gan N; Hu F; Chen X; Li T; Cao J Mikrochim Acta; 2018 Feb; 185(3):181. PubMed ID: 29594631 [TBL] [Abstract][Full Text] [Related]
7. A "signal off" aptasensor based on NiFe He B; Wang K Mikrochim Acta; 2021 Jan; 188(1):23. PubMed ID: 33404751 [TBL] [Abstract][Full Text] [Related]
8. Aptamer-based electrochemical biosensor by using Au-Pt nanoparticles, carbon nanotubes and acriflavine platform. Beiranvand ZS; Abbasi AR; Dehdashtian S; Karimi Z; Azadbakht A Anal Biochem; 2017 Feb; 518():35-45. PubMed ID: 27789234 [TBL] [Abstract][Full Text] [Related]
9. Highly efficient fluorescence sensing of kanamycin using Endo IV-powered DNA walker and hybridization chain reaction amplification. Qu X; Wang J; Zhang R; Zhao Y; Li S; Wang Y; Liu S; Huang J; Yu J Mikrochim Acta; 2020 Mar; 187(3):193. PubMed ID: 32124067 [TBL] [Abstract][Full Text] [Related]
10. Label-free immunosensor for the detection of kanamycin using Ag@Fe₃O₄ nanoparticles and thionine mixed graphene sheet. Yu S; Wei Q; Du B; Wu D; Li H; Yan L; Ma H; Zhang Y Biosens Bioelectron; 2013 Oct; 48():224-9. PubMed ID: 23688606 [TBL] [Abstract][Full Text] [Related]
11. Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework. Li L; Yuan Y; Chen Y; Zhang P; Bai Y; Bai L Mikrochim Acta; 2018 Jul; 185(8):379. PubMed ID: 30019137 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and electrocatalytic effect of Ag@Pt core-shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor. Mazloum-Ardakani M; Hosseinzadeh L; Taleat Z Biosens Bioelectron; 2015 Dec; 74():30-6. PubMed ID: 26094037 [TBL] [Abstract][Full Text] [Related]
13. Palindromic Molecular Beacon Based Z-Scheme BiOCl-Au-CdS Photoelectrochemical Biodetection. Zeng R; Luo Z; Su L; Zhang L; Tang D; Niessner R; Knopp D Anal Chem; 2019 Feb; 91(3):2447-2454. PubMed ID: 30609356 [TBL] [Abstract][Full Text] [Related]
14. Enzyme- and label-free electrochemical aptasensor for kanamycin detection based on double stir bar-assisted toehold-mediated strand displacement reaction for dual-signal amplification. Hong F; Chen X; Cao Y; Dong Y; Wu D; Hu F; Gan N Biosens Bioelectron; 2018 Jul; 112():202-208. PubMed ID: 29709830 [TBL] [Abstract][Full Text] [Related]
15. Highly sensitive aptasensor based on synergetic catalysis activity of MoS Song HY; Kang TF; Lu LP; Cheng SY Talanta; 2017 Mar; 164():27-33. PubMed ID: 28107929 [TBL] [Abstract][Full Text] [Related]
16. Photoelectrochemical Aptasensors Constructed with Photosensitive PbS Quantum Dots/TiO Xing Y; Chen X; Jin B; Chen P; Huang C; Jin Z Langmuir; 2021 Mar; 37(12):3612-3619. PubMed ID: 33730504 [TBL] [Abstract][Full Text] [Related]
17. An aptasensor for cadmium ions detection based on PEI-MoS Li M; He B; Yan H; Xie L; Cao X; Jin H; Wei M; Ren W; Suo Z; Xu Y Anal Chim Acta; 2022 Nov; 1232():340470. PubMed ID: 36257744 [TBL] [Abstract][Full Text] [Related]
18. A fluorometric aptamer method for kanamycin by applying a dual amplification strategy and using double Y-shaped DNA probes on a gold bar and on magnetite nanoparticles. Zhang K; Cao J; Wu Y; Hu F; Li T; Wang Y; Gan N Mikrochim Acta; 2019 Jan; 186(2):120. PubMed ID: 30666478 [TBL] [Abstract][Full Text] [Related]
19. Mimicking an Enzyme-Based Colorimetric Aptasensor for Antibiotic Residue Detection in Milk Combining Magnetic Loop-DNA Probes and CHA-Assisted Target Recycling Amplification. Luan Q; Gan N; Cao Y; Li T J Agric Food Chem; 2017 Jul; 65(28):5731-5740. PubMed ID: 28654744 [TBL] [Abstract][Full Text] [Related]
20. Molecular machine and gold/graphene quantum dot hybrid based dual amplification strategy for voltammetric detection of VEGF165. Hongxia C; Zaijun L; Ruiyi L; Guangli W; Zhiguo G Mikrochim Acta; 2019 Mar; 186(4):242. PubMed ID: 30877385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]