These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Protein deglycosylation can drastically affect the cellular uptake. Ghazaryan A; Landfester K; Mailänder V Nanoscale; 2019 Jun; 11(22):10727-10737. PubMed ID: 31120044 [TBL] [Abstract][Full Text] [Related]
3. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Duan G; Kang SG; Tian X; Garate JA; Zhao L; Ge C; Zhou R Nanoscale; 2015 Oct; 7(37):15214-24. PubMed ID: 26315610 [TBL] [Abstract][Full Text] [Related]
4. Differential Recognition of Nanoparticle Protein Corona and Modified Low-Density Lipoprotein by Macrophage Receptor with Collagenous Structure. Lara S; Perez-Potti A; Herda LM; Adumeau L; Dawson KA; Yan Y ACS Nano; 2018 May; 12(5):4930-4937. PubMed ID: 29668255 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of Graphene Nanofluids with Controllable Flake Size Distributions. Baolei D; Qifei J J Vis Exp; 2019 Jul; (149):. PubMed ID: 31380829 [TBL] [Abstract][Full Text] [Related]
6. The "sweet" side of the protein corona: effects of glycosylation on nanoparticle-cell interactions. Wan S; Kelly PM; Mahon E; Stöckmann H; Rudd PM; Caruso F; Dawson KA; Yan Y; Monopoli MP ACS Nano; 2015 Feb; 9(2):2157-66. PubMed ID: 25599105 [TBL] [Abstract][Full Text] [Related]
7. Identification of Receptor Binding to the Biomolecular Corona of Nanoparticles. Lara S; Alnasser F; Polo E; Garry D; Lo Giudice MC; Hristov DR; Rocks L; Salvati A; Yan Y; Dawson KA ACS Nano; 2017 Feb; 11(2):1884-1893. PubMed ID: 28112950 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the bionano interface and mapping extrinsic interactions of the corona of nanomaterials. O'Connell DJ; Bombelli FB; Pitek AS; Monopoli MP; Cahill DJ; Dawson KA Nanoscale; 2015 Oct; 7(37):15268-76. PubMed ID: 26324751 [TBL] [Abstract][Full Text] [Related]
9. Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport. Abdelkhaliq A; van der Zande M; Punt A; Helsdingen R; Boeren S; Vervoort JJM; Rietjens IMCM; Bouwmeester H J Nanobiotechnology; 2018 Sep; 16(1):70. PubMed ID: 30219059 [TBL] [Abstract][Full Text] [Related]
10. Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System. Barbero F; Russo L; Vitali M; Piella J; Salvo I; Borrajo ML; Busquets-Fité M; Grandori R; Bastús NG; Casals E; Puntes V Semin Immunol; 2017 Dec; 34():52-60. PubMed ID: 29066063 [TBL] [Abstract][Full Text] [Related]
11. Label-free tracking of nanosized graphene oxide cellular uptake by confocal Raman microscopy. Eliášová Sohová M; Bodík M; Siffalovic P; Bugárová N; Labudová M; Zaťovičová M; Hianik T; Omastová M; Majková E; Jergel M; Pastoreková S Analyst; 2018 Jul; 143(15):3686-3692. PubMed ID: 29978167 [TBL] [Abstract][Full Text] [Related]
12. Reciprocal upregulation of scavenger receptors complicates interpretation of nanoparticle uptake in non-phagocytic cells. Prapainop K; Miao R; Åberg C; Salvati A; Dawson KA Nanoscale; 2017 Aug; 9(31):11261-11268. PubMed ID: 28758667 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy. Huang J; Zong C; Shen H; Liu M; Chen B; Ren B; Zhang Z Small; 2012 Aug; 8(16):2577-84. PubMed ID: 22641430 [TBL] [Abstract][Full Text] [Related]
14. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Ban Z; Yuan P; Yu F; Peng T; Zhou Q; Hu X Proc Natl Acad Sci U S A; 2020 May; 117(19):10492-10499. PubMed ID: 32332167 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona. Ahsan SM; Rao CM; Ahmad MF Adv Exp Med Biol; 2018; 1048():175-198. PubMed ID: 29453539 [TBL] [Abstract][Full Text] [Related]
16. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake. Piloni A; Wong CK; Chen F; Lord M; Walther A; Stenzel MH Nanoscale; 2019 Dec; 11(48):23259-23267. PubMed ID: 31782458 [TBL] [Abstract][Full Text] [Related]
17. Evolution of Nanoparticle Protein Corona across the Blood-Brain Barrier. Cox A; Andreozzi P; Dal Magro R; Fiordaliso F; Corbelli A; Talamini L; Chinello C; Raimondo F; Magni F; Tringali M; Krol S; Jacob Silva P; Stellacci F; Masserini M; Re F ACS Nano; 2018 Jul; 12(7):7292-7300. PubMed ID: 29953205 [TBL] [Abstract][Full Text] [Related]
18. Understanding the Chemical Nature of Nanoparticle-Protein Interactions. Baimanov D; Cai R; Chen C Bioconjug Chem; 2019 Jul; 30(7):1923-1937. PubMed ID: 31259537 [TBL] [Abstract][Full Text] [Related]
19. PEG-Peptide Inhibition of Scavenger Receptor Uptake of Nanoparticles by the Liver. Allen RJ; Mathew B; Rice KG Mol Pharm; 2018 Sep; 15(9):3881-3891. PubMed ID: 30052459 [TBL] [Abstract][Full Text] [Related]
20. Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells. Palchetti S; Pozzi D; Capriotti AL; Barbera G; Chiozzi RZ; Digiacomo L; Peruzzi G; Caracciolo G; Laganà A Colloids Surf B Biointerfaces; 2017 May; 153():263-271. PubMed ID: 28273493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]