These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 30628448)
41. Graphene oxide: a carrier for pharmaceuticals and a scaffold for cell interactions. Durán N; Martinez DS; Silveira CP; Durán M; de Moraes AC; Simões MB; Alves OL; Fávaro WJ Curr Top Med Chem; 2015; 15(4):309-27. PubMed ID: 25579346 [TBL] [Abstract][Full Text] [Related]
42. Stimulation with a monoclonal antibody (mAb4E4) of scavenger receptor-mediated uptake of chemically modified low density lipoproteins by THP-1-derived macrophages enhances foam cell generation. Holvoet P; Perez G; Bernar H; Brouwers E; Vanloo B; Rosseneu M; Collen D J Clin Invest; 1994 Jan; 93(1):89-98. PubMed ID: 8282826 [TBL] [Abstract][Full Text] [Related]
44. Graphene oxide-cationic polymer conjugates: Synthesis and application as gene delivery vectors. Teimouri M; Nia AH; Abnous K; Eshghi H; Ramezani M Plasmid; 2016; 84-85():51-60. PubMed ID: 27072918 [TBL] [Abstract][Full Text] [Related]
45. Corona Composition Can Affect the Mechanisms Cells Use to Internalize Nanoparticles. Francia V; Yang K; Deville S; Reker-Smit C; Nelissen I; Salvati A ACS Nano; 2019 Oct; 13(10):11107-11121. PubMed ID: 31525954 [TBL] [Abstract][Full Text] [Related]
46. Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials. Palmieri V; Perini G; De Spirito M; Papi M Nanoscale Horiz; 2019 Mar; 4(2):273-290. PubMed ID: 32254085 [TBL] [Abstract][Full Text] [Related]
47. Simulations of a Graphene Nanoflake as a Nanovector To Improve ZnPc Phototherapy Toxicity: From Vacuum to Cell Membrane. Duverger E; Picaud F; Stauffer L; Sonnet P ACS Appl Mater Interfaces; 2017 Nov; 9(43):37554-37562. PubMed ID: 29023087 [TBL] [Abstract][Full Text] [Related]
48. Role of carbohydrate receptors in the macrophage uptake of dextran-coated iron oxide nanoparticles. Chao Y; Karmali PP; Simberg D Adv Exp Med Biol; 2012; 733():115-23. PubMed ID: 22101717 [TBL] [Abstract][Full Text] [Related]
49. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition. Raesch SS; Tenzer S; Storck W; Rurainski A; Selzer D; Ruge CA; Perez-Gil J; Schaefer UF; Lehr CM ACS Nano; 2015 Dec; 9(12):11872-85. PubMed ID: 26575243 [TBL] [Abstract][Full Text] [Related]
50. Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI. Chao Y; Karmali PP; Mukthavaram R; Kesari S; Kouznetsova VL; Tsigelny IF; Simberg D ACS Nano; 2013 May; 7(5):4289-98. PubMed ID: 23614696 [TBL] [Abstract][Full Text] [Related]
51. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core-shell nanoparticles. Varnamkhasti BS; Hosseinzadeh H; Azhdarzadeh M; Vafaei SY; Esfandyari-Manesh M; Mirzaie ZH; Amini M; Ostad SN; Atyabi F; Dinarvand R Int J Pharm; 2015 Oct; 494(1):430-44. PubMed ID: 26315125 [TBL] [Abstract][Full Text] [Related]
53. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Pozzi D; Colapicchioni V; Caracciolo G; Piovesana S; Capriotti AL; Palchetti S; De Grossi S; Riccioli A; Amenitsch H; Laganà A Nanoscale; 2014 Mar; 6(5):2782-92. PubMed ID: 24463404 [TBL] [Abstract][Full Text] [Related]
54. The protein corona suppresses the cytotoxic and pro-inflammatory response in lung epithelial cells and macrophages upon exposure to nanosilica. Leibe R; Hsiao IL; Fritsch-Decker S; Kielmeier U; Wagbo AM; Voss B; Schmidt A; Hessman SD; Duschl A; Oostingh GJ; Diabaté S; Weiss C Arch Toxicol; 2019 Apr; 93(4):871-885. PubMed ID: 30838431 [TBL] [Abstract][Full Text] [Related]
55. Elucidating the cellular uptake mechanism of aptamer-functionalized graphene-isolated-Au-nanocrystals with dual-modal imaging. Wang S; Liu Z; Zou Y; Lai X; Ding D; Chen L; Zhang L; Wu Y; Chen Z; Tan W Analyst; 2016 May; 141(11):3337-42. PubMed ID: 27111129 [TBL] [Abstract][Full Text] [Related]
56. Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection. Papi M; Palmieri V; Digiacomo L; Giulimondi F; Palchetti S; Ciasca G; Perini G; Caputo D; Cartillone MC; Cascone C; Coppola R; Capriotti AL; Laganà A; Pozzi D; Caracciolo G Nanoscale; 2019 Aug; 11(32):15339-15346. PubMed ID: 31386742 [TBL] [Abstract][Full Text] [Related]
58. Potential clinical applications of the personalized, disease-specific protein corona on nanoparticles. García Vence M; Chantada-Vázquez MDP; Vázquez-Estévez S; Manuel Cameselle-Teijeiro J; Bravo SB; Núñez C Clin Chim Acta; 2020 Feb; 501():102-111. PubMed ID: 31678275 [TBL] [Abstract][Full Text] [Related]
59. Exploring Cellular Interactions of Liposomes Using Protein Corona Fingerprints and Physicochemical Properties. Bigdeli A; Palchetti S; Pozzi D; Hormozi-Nezhad MR; Baldelli Bombelli F; Caracciolo G; Mahmoudi M ACS Nano; 2016 Mar; 10(3):3723-37. PubMed ID: 26882007 [TBL] [Abstract][Full Text] [Related]
60. Nanosilver pathophysiology in earthworms: Transcriptional profiling of secretory proteins and the implication for the protein corona. Hayashi Y; Miclaus T; Engelmann P; Autrup H; Sutherland DS; Scott-Fordsmand JJ Nanotoxicology; 2016; 10(3):303-11. PubMed ID: 26119277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]