These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 30628512)
1. Temperature changes associated with bone drilling in an orbital model: comparison of ultrasonic bone curette and conventional high-speed rotational drill. Chang JR; Gruener AM; Kum C; McCulley TJ Orbit; 2019 Oct; 38(5):376-382. PubMed ID: 30628512 [No Abstract] [Full Text] [Related]
2. Evaluation of drill-induced heat transmission in an orbital model. Chan P; Graue GF; Pizzarello DB; Kim AJ; Kazim M Orbit; 2013 Feb; 32(1):27-9. PubMed ID: 23387451 [TBL] [Abstract][Full Text] [Related]
3. Heat generation by ultrasonic bone curette comparing with high-speed drill. Suzuki K; Wanibuchi M; Minamida Y; Akiyama Y; Mikami T; Fujishige M; Yamamura A; Nakagawa T; Mikuni N Acta Neurochir (Wien); 2018 Apr; 160(4):721-725. PubMed ID: 29302755 [TBL] [Abstract][Full Text] [Related]
4. Collateral damage: heat transfer as a possible mechanism of optic nerve injury during neurosurgical intervention. Shaw ML; Kelley B; Camarata P; Sokol JA Ophthalmic Plast Reconstr Surg; 2012; 28(5):328-30. PubMed ID: 22836793 [TBL] [Abstract][Full Text] [Related]
5. Ultrasonic bone removal versus high-speed burring for lateral orbital decompression: comparison of surgical outcomes for the treatment of thyroid eye disease. Cho RI; Choe CH; Elner VM Ophthalmic Plast Reconstr Surg; 2010; 26(2):83-7. PubMed ID: 20305505 [TBL] [Abstract][Full Text] [Related]
6. Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites - thermographic analysis on bovine ribs. Marković A; Lazić Z; Mišić T; Šćepanović M; Todorović A; Thakare K; Janjić B; Vlahović Z; Glišić M Vojnosanit Pregl; 2016 Aug; 73(8):744-50. PubMed ID: 29328609 [TBL] [Abstract][Full Text] [Related]
7. Optic nerve surface temperature during intradural anterior clinoidectomy: a comparison between high-speed diamond burr and ultrasonic bone curette. Kshettry VR; Jiang X; Chotai S; Ammirati M Neurosurg Rev; 2014 Jul; 37(3):453-8; discussion 458-9. PubMed ID: 24801719 [TBL] [Abstract][Full Text] [Related]
8. Infrared thermographic evaluation of temperature modifications induced during implant site preparation with cylindrical versus conical drills. Scarano A; Piattelli A; Assenza B; Carinci F; Di Donato L; Romani GL; Merla A Clin Implant Dent Relat Res; 2011 Dec; 13(4):319-23. PubMed ID: 19681941 [TBL] [Abstract][Full Text] [Related]
9. Heat Generation During Bony Decompression of Lumbar Spinal Stenosis Using a High-Speed Diamond Drill with or without Automated Irrigation and an Ultrasonic Bone-Cutting Knife: A Single-Blinded Prospective Randomized Controlled Study. Matthes M; Pillich DT; El Refaee E; Schroeder HWS; Müller JU World Neurosurg; 2018 Mar; 111():e72-e81. PubMed ID: 29229343 [TBL] [Abstract][Full Text] [Related]
10. [Effects of ultrasonic bone curettes combined with high-speed drills in posterior laminectomy and decompression procedure for severe thoracic spinal stenosis]. Liu J; Niu DY; Bao XG; Jiang EZ; Shi JG; Chen DY; Xu GH Zhonghua Yi Xue Za Zhi; 2020 Feb; 100(7):521-526. PubMed ID: 32164104 [No Abstract] [Full Text] [Related]
11. Safety of spinal decompression using an ultrasonic bone curette compared with a high-speed drill: outcomes in 337 patients. Bydon M; Xu R; Papademetriou K; Sciubba DM; Wolinsky JP; Witham TF; Gokaslan ZL; Jallo G; Bydon A J Neurosurg Spine; 2013 Jun; 18(6):627-33. PubMed ID: 23560712 [TBL] [Abstract][Full Text] [Related]
12. Ultrasonic bone removal with the Sonopet Omni: a new instrument for orbital and lacrimal surgery. Sivak-Callcott JA; Linberg JV; Patel S Arch Ophthalmol; 2005 Nov; 123(11):1595-7. PubMed ID: 16286624 [TBL] [Abstract][Full Text] [Related]
14. Ultrasonic bone curettage for optic canal unroofing and anterior clinoidectomy. Technical note. Chang HS; Joko M; Song JS; Ito K; Inoue T; Nakagawa H J Neurosurg; 2006 Apr; 104(4):621-4. PubMed ID: 16619669 [TBL] [Abstract][Full Text] [Related]
15. Infrared thermographic evaluation of rise in temperature with conventional versus trephine drills. Gupta S; Gupta AS; Chandu GS; Jain S J Indian Prosthodont Soc; 2021; 21(1):45-49. PubMed ID: 33835067 [TBL] [Abstract][Full Text] [Related]
16. Thermal effects of various drill materials during implant site preparation-Ceramic vs. stainless steel drills: A comparative in vitro study in a standardised bovine bone model. Tur D; Giannis K; Unger E; Mittlböck M; Rausch-Fan X; Strbac GD Clin Oral Implants Res; 2021 Feb; 32(2):154-166. PubMed ID: 33220104 [TBL] [Abstract][Full Text] [Related]
17. The incidence of nerve root injury by high-speed drill can be reduced by chilled saline irrigation in a rabbit model. Tamai K; Suzuki A; Takahashi S; Akhgar J; Rahmani MS; Hayashi K; Ohyama S; Nakamura H Bone Joint J; 2017 Apr; 99-B(4):554-560. PubMed ID: 28385947 [TBL] [Abstract][Full Text] [Related]
19. Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: twisted stainless steel and ceramic drills. Oliveira N; Alaejos-Algarra F; Mareque-Bueno J; Ferrés-Padró E; Hernández-Alfaro F Clin Oral Implants Res; 2012 Aug; 23(8):963-9. PubMed ID: 21806686 [TBL] [Abstract][Full Text] [Related]
20. Heat distribution in bone during preparation of implant sites: heat analysis by real-time thermography. Watanabe F; Tawada Y; Komatsu S; Hata Y Int J Oral Maxillofac Implants; 1992; 7(2):212-9. PubMed ID: 1398838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]