These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30628598)

  • 1. Universal nanothin silk coatings via controlled spidroin self-assembly.
    Zha RH; Delparastan P; Fink TD; Bauer J; Scheibel T; Messersmith PB
    Biomater Sci; 2019 Jan; 7(2):683-695. PubMed ID: 30628598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the Sequence Motive Repeating Number on Protein Folding in Spider Silk Protein Films.
    Hofmaier M; Heger JE; Lentz S; Schwarz S; Müller-Buschbaum P; Scheibel T; Fery A; Müller M
    Biomacromolecules; 2023 Dec; 24(12):5707-5721. PubMed ID: 37934893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomaterial building blocks based on spider silk-oligonucleotide conjugates.
    Humenik M; Scheibel T
    ACS Nano; 2014 Feb; 8(2):1342-9. PubMed ID: 24405063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing conditions for the formation of spider silk microspheres.
    Lammel A; Schwab M; Slotta U; Winter G; Scheibel T
    ChemSusChem; 2008; 1(5):413-6. PubMed ID: 18702135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins.
    Lang G; Jokisch S; Scheibel T
    J Vis Exp; 2013 May; (75):e50492. PubMed ID: 23685883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing conformational changes for patterning thin films of recombinant spider silk proteins.
    Young SL; Gupta M; Hanske C; Fery A; Scheibel T; Tsukruk VV
    Biomacromolecules; 2012 Oct; 13(10):3189-99. PubMed ID: 22947370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycopolymer functionalization of engineered spider silk protein-based materials for improved cell adhesion.
    Hardy JG; Pfaff A; Leal-Egaña A; Müller AH; Scheibel TR
    Macromol Biosci; 2014 Jul; 14(7):936-42. PubMed ID: 24700586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion and seed dependent fibril assembly of a spidroin core domain.
    Humenik M; Smith AM; Arndt S; Scheibel T
    J Struct Biol; 2015 Aug; 191(2):130-8. PubMed ID: 26123261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly mechanism of recombinant spider silk proteins.
    Rammensee S; Slotta U; Scheibel T; Bausch AR
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6590-5. PubMed ID: 18445655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data for ion and seed dependent fibril assembly of a spidroin core domain.
    Humenik M; Smith AM; Arndt S; Scheibel T
    Data Brief; 2015 Sep; 4():571-6. PubMed ID: 26322321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic Vascularization of Recombinant eADF4(C16) Spider Silk Matrices in the Arteriovenous Loop Model.
    Steiner D; Lang G; Fischer L; Winkler S; Fey T; Greil P; Scheibel T; Horch RE; Arkudas A
    Tissue Eng Part A; 2019 Nov; 25(21-22):1504-1513. PubMed ID: 30848159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity.
    Humenik M; Mohrand M; Scheibel T
    Bioconjug Chem; 2018 Apr; 29(4):898-904. PubMed ID: 29338201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1937-47. PubMed ID: 18515724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial coating of spider silk to prevent bacterial attachment on silk surgical sutures.
    Franco AR; Fernandes EM; Rodrigues MT; Rodrigues FJ; Gomes ME; Leonor IB; Kaplan DL; Reis RL
    Acta Biomater; 2019 Nov; 99():236-246. PubMed ID: 31505301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Only kosmotrope anions trigger fibrillization of the recombinant core spidroin eADF4(C16) from Araneus diadematus.
    Hovanová V; Hovan A; Humenik M; Sedlák E
    Protein Sci; 2023 Dec; 32(12):e4832. PubMed ID: 37937854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembly of Recombinant Silk as a Strategy for Chemical-Free Formation of Bioactive Coatings: A Real-Time Study.
    Nilebäck L; Hedin J; Widhe M; Floderus LS; Krona A; Bysell H; Hedhammar M
    Biomacromolecules; 2017 Mar; 18(3):846-854. PubMed ID: 28192654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proposed model for dragline spider silk self-assembly: insights from the effect of the repetitive domain size on fiber properties.
    Ittah S; Barak N; Gat U
    Biopolymers; 2010 May; 93(5):458-68. PubMed ID: 20014164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro- and Nanopatterned Silk Substrates for Antifouling Applications.
    Tullii G; Donini S; Bossio C; Lodola F; Pasini M; Parisini E; Galeotti F; Antognazza MR
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5437-5446. PubMed ID: 31917532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular uptake of drug loaded spider silk particles.
    Schierling MB; Doblhofer E; Scheibel T
    Biomater Sci; 2016 Sep; 4(10):1515-1523. PubMed ID: 27709129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant spider silk particles for controlled delivery of protein drugs.
    Hofer M; Winter G; Myschik J
    Biomaterials; 2012 Feb; 33(5):1554-62. PubMed ID: 22079006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.