BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30629412)

  • 1. Genetically Encoded FapR-NLuc as a Biosensor to Determine Malonyl-CoA in Situ at Subcellular Scales.
    Du Y; Hu H; Pei X; Du K; Wei T
    Bioconjug Chem; 2019 Mar; 30(3):826-832. PubMed ID: 30629412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Genetically Encoded Biosensor for Detection of Polyketide Synthase Extender Units in Escherichia coli.
    Kalkreuter E; Keeler AM; Malico AA; Bingham KS; Gayen AK; Williams GJ
    ACS Synth Biol; 2019 Jun; 8(6):1391-1400. PubMed ID: 31134799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetically encoded metabolite sensor for malonyl-CoA.
    Ellis JM; Wolfgang MJ
    Chem Biol; 2012 Oct; 19(10):1333-9. PubMed ID: 23102226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered dynamic distribution of malonyl-CoA flux for improving polyketide biosynthesis in Komagataella phaffii.
    Wen J; Tian L; Liu Q; Zhang Y; Cai M
    J Biotechnol; 2020 Aug; 320():80-85. PubMed ID: 32574793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories.
    Johnson AO; Gonzalez-Villanueva M; Wong L; Steinbüchel A; Tee KL; Xu P; Wong TS
    Metab Eng; 2017 Nov; 44():253-264. PubMed ID: 29097310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening.
    Li S; Si T; Wang M; Zhao H
    ACS Synth Biol; 2015 Dec; 4(12):1308-15. PubMed ID: 26149896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Synthetic Malonyl-CoA Metabolic Oscillator in
    Wen J; Tian L; Xu M; Zhou X; Zhang Y; Cai M
    ACS Synth Biol; 2020 May; 9(5):1059-1068. PubMed ID: 32227991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis.
    Schujman GE; Paoletti L; Grossman AD; de Mendoza D
    Dev Cell; 2003 May; 4(5):663-72. PubMed ID: 12737802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli.
    Xu P; Wang W; Li L; Bhan N; Zhang F; Koffas MA
    ACS Chem Biol; 2014 Feb; 9(2):451-8. PubMed ID: 24191643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel role of malonyl-ACP in lipid homeostasis.
    Martinez MA; Zaballa ME; Schaeffer F; Bellinzoni M; Albanesi D; Schujman GE; Vila AJ; Alzari PM; de Mendoza D
    Biochemistry; 2010 Apr; 49(14):3161-7. PubMed ID: 20201588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosensor-aided high-throughput screening of hyper-producing cells for malonyl-CoA-derived products.
    Li H; Chen W; Jin R; Jin JM; Tang SY
    Microb Cell Fact; 2017 Nov; 16(1):187. PubMed ID: 29096626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flux Control at the Malonyl-CoA Node through Hierarchical Dynamic Pathway Regulation in Saccharomyces cerevisiae.
    David F; Nielsen J; Siewers V
    ACS Synth Biol; 2016 Mar; 5(3):224-33. PubMed ID: 26750662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria.
    Yang D; Kim WJ; Yoo SM; Choi JH; Ha SH; Lee MH; Lee SY
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9835-9844. PubMed ID: 30232266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in
    Dabirian Y; Li X; Chen Y; David F; Nielsen J; Siewers V
    ACS Synth Biol; 2019 Sep; 8(9):1968-1975. PubMed ID: 31373795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus.
    Albanesi D; Reh G; Guerin ME; Schaeffer F; Debarbouille M; Buschiazzo A; Schujman GE; de Mendoza D; Alzari PM
    PLoS Pathog; 2013 Jan; 9(1):e1003108. PubMed ID: 23300457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering.
    Zha W; Rubin-Pitel SB; Shao Z; Zhao H
    Metab Eng; 2009 May; 11(3):192-8. PubMed ID: 19558964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malonyl-CoA metabolism in cardiac myocytes.
    Hamilton C; Saggerson ED
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):61-7. PubMed ID: 10926826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (p)ppGpp/GTP and Malonyl-CoA Modulate Staphylococcus aureus Adaptation to FASII Antibiotics and Provide a Basis for Synergistic Bi-Therapy.
    Pathania A; Anba-Mondoloni J; Gominet M; Halpern D; Dairou J; Dupont L; Lamberet G; Trieu-Cuot P; Gloux K; Gruss A
    mBio; 2021 Feb; 12(1):. PubMed ID: 33531402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving fatty acid production in Escherichia coli through the overexpression of malonyl coA-acyl carrier protein transacylase.
    Zhang X; Agrawal A; San KY
    Biotechnol Prog; 2012; 28(1):60-5. PubMed ID: 22038854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation.
    Awan MM; Saggerson ED
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):61-6. PubMed ID: 8216240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.