BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 30629431)

  • 1. Gal8 Visualization of Endosome Disruption Predicts Carrier-Mediated Biologic Drug Intracellular Bioavailability.
    Kilchrist KV; Dimobi SC; Jackson MA; Evans BC; Werfel TA; Dailing EA; Bedingfield SK; Kelly IB; Duvall CL
    ACS Nano; 2019 Feb; 13(2):1136-1152. PubMed ID: 30629431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetically Encoded Split-Luciferase Biosensors to Measure Endosome Disruption Rapidly in Live Cells.
    Kilchrist KV; Tierney JW; Duvall CL
    ACS Sens; 2020 Jul; 5(7):1929-1936. PubMed ID: 32573202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo.
    Nelson CE; Kintzing JR; Hanna A; Shannon JM; Gupta MK; Duvall CL
    ACS Nano; 2013 Oct; 7(10):8870-80. PubMed ID: 24041122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning Composition of Polymer and Porous Silicon Composite Nanoparticles for Early Endosome Escape of Anti-microRNA Peptide Nucleic Acids.
    Kelly IB; Fletcher RB; McBride JR; Weiss SM; Duvall CL
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39602-39611. PubMed ID: 32805967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Neutrally-charged, pH-responsive Polymeric Nanoparticles for Cytosolic siRNA Delivery.
    Hendershot J; Smith AE; Werfel TA
    J Vis Exp; 2019 May; (147):. PubMed ID: 31107463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The efficiency of cytosolic drug delivery using pH-responsive endosomolytic polymers does not correlate with activation of the NLRP3 inflammasome.
    Baljon JJ; Dandy A; Wang-Bishop L; Wehbe M; Jacobson ME; Wilson JT
    Biomater Sci; 2019 Apr; 7(5):1888-1897. PubMed ID: 30843539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.
    Lönn P; Kacsinta AD; Cui XS; Hamil AS; Kaulich M; Gogoi K; Dowdy SF
    Sci Rep; 2016 Sep; 6():32301. PubMed ID: 27604151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-responsive three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector.
    Oishi M; Kataoka K; Nagasaki Y
    Bioconjug Chem; 2006; 17(3):677-88. PubMed ID: 16704205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming Endosomal Entrapment in Drug Delivery.
    Pei D; Buyanova M
    Bioconjug Chem; 2019 Feb; 30(2):273-283. PubMed ID: 30525488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of intracellular trafficking, cytosolic bioavailability, and target manipulation of an antibody delivery platform.
    Lv W; Champion JA
    Nanomedicine; 2021 Feb; 32():102315. PubMed ID: 33065253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery.
    Herrera M; Kim J; Eygeris Y; Jozic A; Sahay G
    Biomater Sci; 2021 Jun; 9(12):4289-4300. PubMed ID: 33586742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery.
    Munson MJ; O'Driscoll G; Silva AM; Lázaro-Ibáñez E; Gallud A; Wilson JT; Collén A; Esbjörner EK; Sabirsh A
    Commun Biol; 2021 Feb; 4(1):211. PubMed ID: 33594247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-responsive cationic liposome for endosomal escape mediated drug delivery.
    Rayamajhi S; Marchitto J; Nguyen TDT; Marasini R; Celia C; Aryal S
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110804. PubMed ID: 31972443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors.
    Degors IMS; Wang C; Rehman ZU; Zuhorn IS
    Acc Chem Res; 2019 Jul; 52(7):1750-1760. PubMed ID: 31243966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endosome-disruptive peptides for improving cytosolic delivery of bioactive macromolecules.
    Nakase I; Kobayashi S; Futaki S
    Biopolymers; 2010; 94(6):763-70. PubMed ID: 20564044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery.
    Smith SA; Selby LI; Johnston APR; Such GK
    Bioconjug Chem; 2019 Feb; 30(2):263-272. PubMed ID: 30452233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of Endosomolytic Peptides with Varying Disruption Mechanisms into EGFR-Targeted Protein Conjugates: The Effect on Intracellular Protein Delivery and EGFR Specificity in Breast Cancer Cells.
    Lieser RM; Li Q; Chen W; Sullivan MO
    Mol Pharm; 2022 Feb; 19(2):661-673. PubMed ID: 35040326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging small molecule-induced endosomal escape of siRNA.
    Du Rietz H; Hedlund H; Wilhelmson S; Nordenfelt P; Wittrup A
    Nat Commun; 2020 Apr; 11(1):1809. PubMed ID: 32286269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rab11 and Lysotracker Markers Reveal Correlation between Endosomal Pathways and Transfection Efficiency of Surface-Functionalized Cationic Liposome-DNA Nanoparticles.
    Majzoub RN; Wonder E; Ewert KK; Kotamraju VR; Teesalu T; Safinya CR
    J Phys Chem B; 2016 Jul; 120(26):6439-53. PubMed ID: 27203598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trileucine residues in a ligand-CPP-based siRNA delivery platform improve endosomal escape of siRNA.
    Ullah I; Chung K; Beloor J; Kim J; Cho M; Kim N; Lee KY; Kumar P; Lee SK
    J Drug Target; 2017 Apr; 25(4):320-329. PubMed ID: 27820977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.