These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 30629472)

  • 1. Evaluating physiological signal salience for estimating metabolic energy cost from wearable sensors.
    Ingraham KA; Ferris DP; Remy CD
    J Appl Physiol (1985); 2019 Mar; 126(3):717-729. PubMed ID: 30629472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using wearable physiological sensors to predict energy expenditure.
    Ingraham KA; Ferris DP; David Remy C
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():340-345. PubMed ID: 28813842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning-Based Energy Expenditure Estimation in Assisted and Non-Assisted Gait Using Inertial, EMG, and Heart Rate Wearable Sensors.
    Lopes JM; Figueiredo J; Fonseca P; Cerqueira JJ; Vilas-Boas JP; Santos CP
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving energy expenditure estimates from wearable devices: A machine learning approach.
    O'Driscoll R; Turicchi J; Hopkins M; Horgan GW; Finlayson G; Stubbs JR
    J Sports Sci; 2020 Jul; 38(13):1496-1505. PubMed ID: 32252598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing leg movement enhances wearable monitoring of energy expenditure.
    Slade P; Kochenderfer MJ; Delp SL; Collins SH
    Nat Commun; 2021 Jul; 12(1):4312. PubMed ID: 34257310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confidence in the curve: Establishing instantaneous cost mapping techniques using bilateral ankle exoskeletons.
    Koller JR; Gates DH; Ferris DP; Remy CD
    J Appl Physiol (1985); 2017 Feb; 122(2):242-252. PubMed ID: 27856717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid energy expenditure estimation for ankle assisted and inclined loaded walking.
    Slade P; Troutman R; Kochenderfer MJ; Collins SH; Delp SL
    J Neuroeng Rehabil; 2019 Jun; 16(1):67. PubMed ID: 31171003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M; Penders J; Vullers R; Amft O
    Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy expenditure prediction using a miniaturized ear-worn sensor.
    Atallah L; Leong JJ; Lo B; Yang GZ
    Med Sci Sports Exerc; 2011 Jul; 43(7):1369-77. PubMed ID: 21200349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Machine Learning Strategy for Locomotion Classification and Parameter Estimation Using Fusion of Wearable Sensors.
    Camargo J; Flanagan W; Csomay-Shanklin N; Kanwar B; Young A
    IEEE Trans Biomed Eng; 2021 May; 68(5):1569-1578. PubMed ID: 33710951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using GPS, accelerometry and heart rate to predict outdoor graded walking energy expenditure.
    de Müllenheim PY; Chaudru S; Emily M; Gernigon M; Mahé G; Bickert S; Prioux J; Noury-Desvaux B; Le Faucheur A
    J Sci Med Sport; 2018 Feb; 21(2):166-172. PubMed ID: 29110991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can energy expenditure be accurately assessed using accelerometry-based wearable motion detectors for physical activity monitoring in post-stroke patients in the subacute phase?
    Mandigout S; Lacroix J; Ferry B; Vuillerme N; Compagnat M; Daviet JC
    Eur J Prev Cardiol; 2017 Dec; 24(18):2009-2016. PubMed ID: 29067851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating Oxygen Uptake During Nonsteady-State Activities and Transitions Using Wearable Sensors.
    Altini M; Penders J; Amft O
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):469-75. PubMed ID: 25594986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting ambulatory energy expenditure in lower limb amputees using multi-sensor methods.
    Ladlow P; Nightingale TE; McGuigan MP; Bennett AN; Phillip RD; Bilzon JLJ
    PLoS One; 2019; 14(1):e0209249. PubMed ID: 30703115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMG, heart rate, and accelerometer as estimators of energy expenditure in locomotion.
    Tikkanen O; Kärkkäinen S; Haakana P; Kallinen M; Pullinen T; Finni T
    Med Sci Sports Exerc; 2014 Sep; 46(9):1831-9. PubMed ID: 24504428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wearable hip-assist robot reduces the cardiopulmonary metabolic energy expenditure during stair ascent in elderly adults: a pilot cross-sectional study.
    Kim DS; Lee HJ; Lee SH; Chang WH; Jang J; Choi BO; Ryu GH; Kim YH
    BMC Geriatr; 2018 Sep; 18(1):230. PubMed ID: 30268096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Open Data Set of Inertial, Magnetic, Foot-Ground Contact, and Electromyographic Signals From Wearable Sensors During Walking.
    Camara Miraldo D; Naville Watanabe R; Duarte M
    Motor Control; 2020 Aug; 24(4):558-570. PubMed ID: 32810842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of energy expenditure during high intensity cycling and running using a heart rate and activity monitor in young active adults.
    Klass M; Faoro V; Carpentier A
    PLoS One; 2019; 14(11):e0224948. PubMed ID: 31697742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.