These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30629522)

  • 1. Lower Limb Motion Estimation Using Ultrasound Imaging: A Framework for Assistive Device Control.
    Jahanandish MH; Fey NP; Hoyt K
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2505-2514. PubMed ID: 30629522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Distal Lower-Limb Motion Using Ultrasound-Derived Features of Proximal Skeletal Muscle.
    Jahanandish MH; Fey NP; Hoyt K
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():71-76. PubMed ID: 31374609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound Features of Skeletal Muscle Can Predict Kinematics of Upcoming Lower-Limb Motion.
    Jahanandish MH; Rabe KG; Fey NP; Hoyt K
    Ann Biomed Eng; 2021 Feb; 49(2):822-833. PubMed ID: 32959134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound-Derived Features of Muscle Architecture Provide Unique Temporal Characterization of Volitional Knee Motion.
    Rabe KG; Jahanandish MH; Fey NP
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4828-4831. PubMed ID: 34892290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging.
    Zhou GQ; Chan P; Zheng YP
    Ultrasonics; 2015 Mar; 57():72-83. PubMed ID: 25465963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning to extract muscle fascicle length changes from dynamic ultrasound images in real-time.
    Rosa LG; Zia JS; Inan OT; Sawicki GS
    PLoS One; 2021; 16(5):e0246611. PubMed ID: 34038426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation and visualization of longitudinal muscle motion using ultrasonography: a feasibility study.
    Li J; Zhou Y; Ivanov K; Zheng YP
    Ultrasonics; 2014 Mar; 54(3):779-88. PubMed ID: 24206676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating Electromyography and Sonomyography Sensor Fusion to Estimate Lower-Limb Kinematics Using Gaussian Process Regression.
    Rabe KG; Fey NP
    Front Robot AI; 2022; 9():716545. PubMed ID: 35386586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait Phase Identification During Level, Incline and Decline Ambulation Tasks Using Portable Sonomyographic Sensing.
    Jahanandish MH; Rabe KG; Fey NP; Hoyt K
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():988-993. PubMed ID: 31374758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Sonomyographic Sensing to Estimate Knee Angular Velocity During Varying Modes of Ambulation.
    Rabe KG; Hassan Jahanandish M; Hoyt K; Fey NP
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3799-3802. PubMed ID: 33018828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Extraction of Muscle Parameters with Attention UNet in Ultrasonography.
    Katakis S; Barotsis N; Kakotaritis A; Economou G; Panagiotopoulos E; Panayiotakis G
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing a device for simultaneously investigating pivoting neuromuscular control and muscle properties toward a multi-axis rehabilitation.
    Lee SJ; Kang H; Kim KT; Kang SH
    PLoS One; 2024; 19(7):e0304665. PubMed ID: 38976655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive neuro-fuzzy inference system model driven by the non-negative matrix factorization-extracted muscle synergy patterns to estimate lower limb joint movements.
    Xu D; Zhou H; Quan W; Gusztav F; Baker JS; Gu Y
    Comput Methods Programs Biomed; 2023 Dec; 242():107848. PubMed ID: 37863010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo estimation of contraction velocity of human vastus lateralis muscle during "isokinetic" action.
    Ichinose Y; Kawakami Y; Ito M; Kanehisa H; Fukunaga T
    J Appl Physiol (1985); 2000 Mar; 88(3):851-6. PubMed ID: 10710378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between muscle thickness and pennation angle is mediated by fascicle length in the muscles of the lower extremities.
    Martin-Rodriguez S; Gonzalez-Henriquez JJ; Diaz-Conde JC; Calbet JAL; Sanchis-Moysi J
    Sci Rep; 2024 Jun; 14(1):14847. PubMed ID: 38937524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vastus lateralis fascicle length changes during stair ascent and descent.
    Chleboun GS; Harrigal ST; Odenthal JZ; Shula-Blanchard LA; Steed JN
    J Orthop Sports Phys Ther; 2008 Oct; 38(10):624-31. PubMed ID: 18827324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure based MRI-compatible muscle fascicle length and joint angle estimation.
    Song H; Israel E; Srinivasan S; Herr H
    J Neuroeng Rehabil; 2020 Aug; 17(1):118. PubMed ID: 32843093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography.
    Tu P; Li J; Wang H
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of lower limb muscle architecture and geometry in distance runners with rearfoot and forefoot strike pattern.
    Gonzales JM; Galpin AJ; Montgomery MM; Pamukoff DN
    J Sports Sci; 2019 Oct; 37(19):2184-2190. PubMed ID: 31170885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle.
    Chleboun GS; France AR; Crill MT; Braddock HK; Howell JN
    Cells Tissues Organs; 2001; 169(4):401-9. PubMed ID: 11490120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.