BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30629523)

  • 1. Modeling Wrist Micromovements to Measure In-Meal Eating Behavior From Inertial Sensor Data.
    Kyritsis K; Diou C; Delopoulos A
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2325-2334. PubMed ID: 30629523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting Meals In the Wild Using the Inertial Data of a Typical Smartwatch.
    Kyritsis K; Diou C; Delopoulos A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4229-4232. PubMed ID: 31946802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of real life eating difficulties in Parkinson's disease patients by measuring plate to mouth movement elongation with inertial sensors.
    Kyritsis K; Fagerberg P; Ioakimidis I; Chaudhuri KR; Reichmann H; Klingelhoefer L; Delopoulos A
    Sci Rep; 2021 Jan; 11(1):1632. PubMed ID: 33452324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Data Driven End-to-End Approach for In-the-Wild Monitoring of Eating Behavior Using Smartwatches.
    Kyritsis K; Diou C; Delopoulos A
    IEEE J Biomed Health Inform; 2021 Jan; 25(1):22-34. PubMed ID: 32750897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated analysis of in meal eating behavior using a commercial wristband IMU sensor.
    Kyritsis K; Tatli CL; Diou C; Delopoulos A
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2843-2846. PubMed ID: 29060490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Analysis of Food Intake and Meal Microstructure Based on Continuous Weight Measurements.
    Papapanagiotou V; Diou C; Ioakimidis I; Sodersten P; Delopoulos A
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):893-902. PubMed ID: 29993620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a Deep Learning System for the Full Automation of Bite and Meal Duration Analysis of Experimental Meal Videos.
    Konstantinidis D; Dimitropoulos K; Langlet B; Daras P; Ioakimidis I
    Nutrients; 2020 Jan; 12(1):. PubMed ID: 31941145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting periods of eating during free-living by tracking wrist motion.
    Dong Y; Scisco J; Wilson M; Muth E; Hoover A
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1253-60. PubMed ID: 24058042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-to-end Learning for Measuring in-meal Eating Behavior from a Smartwatch.
    Kyritsis K; Diou C; Delopoulos A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5511-5514. PubMed ID: 30441585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smartwatch-Based Eating Detection: Data Selection for Machine Learning from Imbalanced Data with Imperfect Labels.
    Stankoski S; Jordan M; Gjoreski H; Luštrek M
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33803121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An End-to-End Energy-Efficient Approach for Intake Detection With Low Inference Time Using Wrist-Worn Sensor.
    Wei B; Zhang S; Diao X; Xu Q; Gao Y; Alshurafa N
    IEEE J Biomed Health Inform; 2023 Aug; 27(8):3878-3888. PubMed ID: 37192033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The shape of the cumulative food intake curve in humans, during basic and manipulated meals.
    Westerterp-Plantenga MS; Westerterp KR; Nicolson NA; Mordant A; Schoffelen PF; ten Hoor F
    Physiol Behav; 1990 Mar; 47(3):569-76. PubMed ID: 2359771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Wearable Device for Food Intake and Physical Activity Recognition.
    Farooq M; Sazonov E
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27409622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bottom-up method Towards the Automatic and Objective Monitoring of Smoking Behavior In-the-wild using Wrist-mounted Inertial Sensors.
    Kirmizis A; Kyritsis K; Delopoulos A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6867-6870. PubMed ID: 34892684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning-Based Unobtrusive Intake Gesture Detection via Wearable Inertial Sensors.
    Al Jlailaty H; Celik A; Mansour MM; Eltawil AM
    IEEE Trans Biomed Eng; 2023 Apr; 70(4):1389-1400. PubMed ID: 36282827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drinking Gesture Detection Using Wrist-Worn IMU Sensors with Multi-Stage Temporal Convolutional Network in Free-Living Environments.
    Wang C; Kumar TS; De Raedt W; Camps G; Hallez H; Vanrumste B
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1778-1782. PubMed ID: 36085938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Using a Smartwatch to Monitor Frailty in a Hospital Setting: Using a Single Wrist-Wearable Sensor to Assess Frailty in Bedbound Inpatients.
    Lee H; Joseph B; Enriquez A; Najafi B
    Gerontology; 2018; 64(4):389-400. PubMed ID: 29176316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep stage classification based on multi-level feature learning and recurrent neural networks via wearable device.
    Zhang X; Kou W; Chang EI; Gao H; Fan Y; Xu Y
    Comput Biol Med; 2018 Dec; 103():71-81. PubMed ID: 30342269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CNN-LSTM neural network for recognition of puffing in smoking episodes using wearable sensors.
    Senyurek VY; Imtiaz MH; Belsare P; Tiffany S; Sazonov E
    Biomed Eng Lett; 2020 May; 10(2):195-203. PubMed ID: 32431952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring eating habits using a piezoelectric sensor-based necklace.
    Kalantarian H; Alshurafa N; Le T; Sarrafzadeh M
    Comput Biol Med; 2015 Mar; 58():46-55. PubMed ID: 25616023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.