These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 30629650)
1. Does prey encounter and nutrient content affect prey selection in wolf spiders inhabiting Bt cotton fields? Rendon D; Taylor PW; Wilder SM; Whitehouse MEA PLoS One; 2019; 14(1):e0210296. PubMed ID: 30629650 [TBL] [Abstract][Full Text] [Related]
2. Influence of Crop Management and Environmental Factors on Wolf Spider Assemblages (Araneae: Lycosidae) in an Australian Cotton Cropping System. Rendon D; Whitehouse ME; Hulugalle NR; Taylor PW Environ Entomol; 2015 Feb; 44(1):174-85. PubMed ID: 26308820 [TBL] [Abstract][Full Text] [Related]
3. Revision of the Australian Union-Jack wolf spiders, genus Framenau VW; Baehr BC Zootaxa; 2016 Dec; 4213(1):zootaxa.4213.1.1. PubMed ID: 28006790 [TBL] [Abstract][Full Text] [Related]
4. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Roubinet E; Birkhofer K; Malsher G; Staudacher K; Ekbom B; Traugott M; Jonsson M Ecol Appl; 2017 Jun; 27(4):1167-1177. PubMed ID: 28132400 [TBL] [Abstract][Full Text] [Related]
5. Predator water balance alters intraguild predation in a streamside food web. Leinbach IL; McCluney KE; Sabo JL Ecology; 2019 Apr; 100(4):e02635. PubMed ID: 30693470 [TBL] [Abstract][Full Text] [Related]
6. Wolf spiders show graded antipredator behavior in the presence of chemical cues from different sized predators. Persons MH; Rypstra AL J Chem Ecol; 2001 Dec; 27(12):2493-504. PubMed ID: 11789954 [TBL] [Abstract][Full Text] [Related]
7. Non-pest prey do not disrupt aphid predation by a web-building spider. Welch KD; Whitney TD; Harwood JD Bull Entomol Res; 2016 Feb; 106(1):91-8. PubMed ID: 26584533 [TBL] [Abstract][Full Text] [Related]
8. Oviposition site selection and survival of susceptible and resistant larvae of Helicoverpa armigera (Lepidoptera: Noctuidae) on Bt and non-Bt cotton. Luong TT; Downes SJ; Cribb B; Perkins LE; Zalucki MP Bull Entomol Res; 2016 Dec; 106(6):710-717. PubMed ID: 27378652 [TBL] [Abstract][Full Text] [Related]
9. Characterizing indirect prey-quality mediated effects of a Bt crop on predatory larvae of the green lacewing, Chrysoperla carnea. Lawo NC; Wäckers FL; Romeis J J Insect Physiol; 2010 Nov; 56(11):1702-10. PubMed ID: 20619267 [TBL] [Abstract][Full Text] [Related]
10. Effect of NaCl-stressed Bacillus thuringiensis (Bt) cotton on the feeding behaviors and nutritional parameters of Helicoverpa armigera. Luo JY; Zhang S; Zhu XZ; Ji JC; Zhang KX; Wang CY; Zhang LJ; Wang L; Cui JJ PLoS One; 2018; 13(9):e0198570. PubMed ID: 30216338 [TBL] [Abstract][Full Text] [Related]
11. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton. Luo JY; Zhang S; Peng J; Zhu XZ; Lv LM; Wang CY; Li CH; Zhou ZG; Cui JJ PLoS One; 2017; 12(1):e0170379. PubMed ID: 28099508 [TBL] [Abstract][Full Text] [Related]
12. Frequency of resistance alleles to Cry1Ac toxin from cotton bollworm, Helicoverpa armigera (Hübner) collected from Bt-cotton growing areas of Telangana state of India. Singh TVK; Kukanur VS; G B S J Invertebr Pathol; 2021 Jul; 183():107559. PubMed ID: 33617874 [TBL] [Abstract][Full Text] [Related]
13. Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades. Finke DL; Denno RF Oecologia; 2006 Aug; 149(2):265-75. PubMed ID: 16708227 [TBL] [Abstract][Full Text] [Related]
14. Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm. Chen WB; Lu GQ; Cheng HM; Liu CX; Xiao YT; Xu C; Shen ZC; Soberón M; Bravo A; Wu KM Transgenic Res; 2017 Dec; 26(6):763-774. PubMed ID: 29143178 [TBL] [Abstract][Full Text] [Related]
15. Metabolic and behavioral responses of predators to prey nutrient content. Koemel NA; Barnes CL; Wilder SM J Insect Physiol; 2019 Jul; 116():25-31. PubMed ID: 31009622 [TBL] [Abstract][Full Text] [Related]
17. Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Ni M; Ma W; Wang X; Gao M; Dai Y; Wei X; Zhang L; Peng Y; Chen S; Ding L; Tian Y; Li J; Wang H; Wang X; Xu G; Guo W; Yang Y; Wu Y; Heuberger S; Tabashnik BE; Zhang T; Zhu Z Plant Biotechnol J; 2017 Sep; 15(9):1204-1213. PubMed ID: 28199783 [TBL] [Abstract][Full Text] [Related]
18. Nutritional value of cannibalism and the role of starvation and nutrient imbalance for cannibalistic tendencies in a generalist predator. Mayntz D; Toft S J Anim Ecol; 2006 Jan; 75(1):288-97. PubMed ID: 16903066 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the predator community of a subterranean herbivorous insect based on polymerase chain reaction. Lundgren JG; Ellsbury ME; Prischmann DA Ecol Appl; 2009 Dec; 19(8):2157-66. PubMed ID: 20014585 [TBL] [Abstract][Full Text] [Related]
20. Prey nutrient composition has different effects on Pardosa wolf spiders with dissimilar life histories. Jensen K; Mayntz D; Toft S; Raubenheimer D; Simpson SJ Oecologia; 2011 Mar; 165(3):577-83. PubMed ID: 20976606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]