These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30629989)

  • 1. TARP mediation of accelerated and more regular locus coeruleus network bursting in neonatal rat brain slices.
    Rawal B; Rancic V; Ballanyi K
    Neuropharmacology; 2019 Apr; 148():169-177. PubMed ID: 30629989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective excitatory actions of DNQX and CNQX in rat thalamic neurons.
    Lee SH; Govindaiah G; Cox CL
    J Neurophysiol; 2010 Apr; 103(4):1728-34. PubMed ID: 20107128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autocrine Neuromodulation and Network Activity Patterns in the Locus Coeruleus of Newborn Rat Slices.
    Waselenchuk Q; Ballanyi K
    Brain Sci; 2022 Mar; 12(4):. PubMed ID: 35447969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suction electrode recording in locus coeruleus of newborn rat brain slices reveals network bursting comprising summated non-synchronous spiking.
    Rancic V; Rawal B; Panaitescu B; Ruangkittisakul A; Ballanyi K
    Neurosci Lett; 2018 Apr; 671():103-107. PubMed ID: 29447951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mediation of Sinusoidal Network Oscillations in the Locus Coeruleus of Newborn Rat Slices by Pharmacologically Distinct AMPA and KA Receptors.
    Rawal B; Ballanyi K
    Brain Sci; 2022 Jul; 12(7):. PubMed ID: 35884751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitatory amino acid receptors are involved in morphine-induced synchronous oscillatory discharges in the locus coeruleus of rats.
    Zhu H; Zhou W
    Eur J Pharmacol; 2005 Dec; 528(1-3):73-8. PubMed ID: 16316646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early activation of Ca(2+)-permeable AMPA receptors reduces neurite outgrowth in embryonic chick retinal neurons.
    Catsicas M; Allcorn S; Mobbs P
    J Neurobiol; 2001 Nov; 49(3):200-11. PubMed ID: 11745658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane AMPA receptor regulatory protein regulation of competitive antagonism: a problem of interpretation.
    Maclean DM; Bowie D
    J Physiol; 2011 Nov; 589(Pt 22):5383-90. PubMed ID: 21969453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local opiate withdrawal in locus coeruleus neurons in vitro.
    Ivanov A; Aston-Jones G
    J Neurophysiol; 2001 Jun; 85(6):2388-97. PubMed ID: 11387385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 5-hydroxytryptamine2 agonist augments gamma-aminobutyric acid and excitatory amino acid inputs to noradrenergic locus coeruleus neurons.
    Chiang C; Aston-Jones G
    Neuroscience; 1993 May; 54(2):409-20. PubMed ID: 8101639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane AMPAR regulatory protein γ-2 is required for the modulation of GABA release by presynaptic AMPARs.
    Rigby M; Cull-Candy SG; Farrant M
    J Neurosci; 2015 Mar; 35(10):4203-14. PubMed ID: 25762667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of Ca(2+)-permeable AMPA/KA receptors to glutamate-induced Ca(2+) rise in embryonic lumbar motoneurons in situ.
    Metzger F; Kulik A; Sendtner M; Ballanyi K
    J Neurophysiol; 2000 Jan; 83(1):50-9. PubMed ID: 10634852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium hyperexcitability in neurons cultured with glutamate receptor blockade.
    Obrietan K; Van den Pol AN
    J Neurophysiol; 1995 Apr; 73(4):1524-36. PubMed ID: 7643164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of NMDA receptors to network recruitment and rhythm generation in spinal cord cultures.
    Legrand JC; Darbon P; Streit J
    Eur J Neurosci; 2004 Feb; 19(3):521-32. PubMed ID: 14984403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Late embryonic expression of AMPA receptor function in the CA1 region of the intact hippocampus in vitro.
    Diabira D; Hennou S; Chevassus-Au-Louis N; Ben-Ari Y; Gozlan H
    Eur J Neurosci; 1999 Nov; 11(11):4015-23. PubMed ID: 10583490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ.
    Shelton MK; McCarthy KD
    Glia; 1999 Mar; 26(1):1-11. PubMed ID: 10088667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of ATP in fast excitatory synaptic potentials in locus coeruleus neurones of the rat.
    Nieber K; Poelchen W; Illes P
    Br J Pharmacol; 1997 Oct; 122(3):423-30. PubMed ID: 9351497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiration-modulated membrane potential and chemosensitivity of locus coeruleus neurones in the in vitro brainstem-spinal cord of the neonatal rat.
    Oyamada Y; Ballantyne D; Mückenhoff K; Scheid P
    J Physiol; 1998 Dec; 513 ( Pt 2)(Pt 2):381-98. PubMed ID: 9806990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depolarization of rat locus coeruleus neurons by adenosine 5'-triphosphate.
    Harms L; Finta EP; Tschöpl M; Illes P
    Neuroscience; 1992 Jun; 48(4):941-52. PubMed ID: 1630630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of ionotropic glutamate receptor-mediated nitric oxide production in vivo in rats.
    Bhardwaj A; Northington FJ; Ichord RN; Hanley DF; Traystman RJ; Koehler RC
    Stroke; 1997 Apr; 28(4):850-6; discussion 856-7. PubMed ID: 9099207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.