These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 30630013)
1. Automatic stereology of mean nuclear size of neurons using an active contour framework. Ahmady Phoulady H; Goldgof D; Hall LO; Nash KR; Mouton PR J Chem Neuroanat; 2019 Mar; 96():110-115. PubMed ID: 30630013 [TBL] [Abstract][Full Text] [Related]
2. Automatic ground truth for deep learning stereology of immunostained neurons and microglia in mouse neocortex. Ahmady Phoulady H; Goldgof D; Hall LO; Mouton PR J Chem Neuroanat; 2019 Jul; 98():1-7. PubMed ID: 30836126 [TBL] [Abstract][Full Text] [Related]
3. Automated Cell Counts on Tissue Sections by Deep Learning and Unbiased Stereology. Alahmari SS; Goldgof D; Hall L; Phoulady HA; Patel RH; Mouton PR J Chem Neuroanat; 2019 Mar; 96():94-101. PubMed ID: 30594529 [TBL] [Abstract][Full Text] [Related]
4. A disector-based framework for the automatic optical fractionator. Dave P; Goldgof D; Hall LO; Kolinko Y; Allen K; Alahmari S; Mouton PR J Chem Neuroanat; 2022 Oct; 124():102134. PubMed ID: 35839940 [TBL] [Abstract][Full Text] [Related]
5. Semi-Quantitative Determination of Dopaminergic Neuron Density in the Substantia Nigra of Rodent Models using Automated Image Analysis. O'Hara DM; Kapadia M; Ping S; Kalia SK; Kalia LV J Vis Exp; 2021 Feb; (168):. PubMed ID: 33616088 [TBL] [Abstract][Full Text] [Related]
6. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours. Li D; Liu L; Chen J; Li H; Yin Y; Ibragimov B; Xing L Phys Med Biol; 2017 Jan; 62(1):272-288. PubMed ID: 27991439 [TBL] [Abstract][Full Text] [Related]
7. Automated identification of neurons and their locations. Inglis A; Cruz L; Roe DL; Stanley HE; Rosene DL; Urbanc B J Microsc; 2008 Jun; 230(Pt 3):339-52. PubMed ID: 18503659 [TBL] [Abstract][Full Text] [Related]
8. A new automatic image analysis method for assessing estrogen receptors' status in breast tissue specimens. Mouelhi A; Sayadi M; Fnaiech F; Mrad K; Ben Romdhane K Comput Biol Med; 2013 Dec; 43(12):2263-77. PubMed ID: 24290943 [TBL] [Abstract][Full Text] [Related]
9. NeuN is not a reliable marker of dopamine neurons in rat substantia nigra. Cannon JR; Greenamyre JT Neurosci Lett; 2009 Oct; 464(1):14-7. PubMed ID: 19682546 [TBL] [Abstract][Full Text] [Related]
10. A non-cholinergic neuronal loss in the pedunculopontine nucleus of toxin-evoked parkinsonian rats. Pienaar IS; van de Berg W Exp Neurol; 2013 Oct; 248():213-23. PubMed ID: 23769975 [TBL] [Abstract][Full Text] [Related]
11. Semiautomatic bladder segmentation on CBCT using a population-based model for multiple-plan ART of bladder cancer. Chai X; van Herk M; Betgen A; Hulshof M; Bel A Phys Med Biol; 2012 Dec; 57(24):N525-41. PubMed ID: 23190683 [TBL] [Abstract][Full Text] [Related]
12. Automatic segmentation of cell nuclei in Feulgen-stained histological sections of prostate cancer and quantitative evaluation of segmentation results. Nielsen B; Albregtsen F; Danielsen HE Cytometry A; 2012 Jul; 81(7):588-601. PubMed ID: 22605528 [TBL] [Abstract][Full Text] [Related]
13. Morphological study of the tegmental pedunculopontine nucleus, substantia nigra and subthalamic nucleus, and their interconnections in rat organotypic culture. Ichinohe N; Teng B; Kitai ST Anat Embryol (Berl); 2000 Jun; 201(6):435-53. PubMed ID: 10909898 [TBL] [Abstract][Full Text] [Related]
14. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model. Chai X; van Herk M; Betgen A; Hulshof M; Bel A Phys Med Biol; 2012 Jun; 57(12):3945-62. PubMed ID: 22643320 [TBL] [Abstract][Full Text] [Related]
15. Neurotensin terminals form synapses primarily with neurons lacking detectable tyrosine hydroxylase immunoreactivity in the rat substantia nigra and ventral tegmental area. Woulfe J; Beaudet A J Comp Neurol; 1992 Jul; 321(1):163-76. PubMed ID: 1351897 [TBL] [Abstract][Full Text] [Related]
16. A Dirichlet process mixture model for automatic (18)F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions. Giri MG; Cavedon C; Mazzarotto R; Ferdeghini M Med Phys; 2016 May; 43(5):2491. PubMed ID: 27147360 [TBL] [Abstract][Full Text] [Related]
17. Sampling theory and automated simulations for vertical sections, applied to human brain. Cruz-Orive LM; Gelšvartas J; Roberts N J Microsc; 2014 Feb; 253(2):119-50. PubMed ID: 24422975 [TBL] [Abstract][Full Text] [Related]
18. [Medical image segmentation based on the minimum variation snake model]. Zhou C; Yu S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):32-5. PubMed ID: 17333887 [TBL] [Abstract][Full Text] [Related]
19. Nuclear-labeling index analysis (NLIA), a software package used to perform accurate automation of cell nuclear-labeling index analysis on immunohistochemically stained rat liver samples. Xu YH; Sattler GL; Edwards H; Pitot HC Comput Methods Programs Biomed; 2000 Aug; 63(1):55-70. PubMed ID: 10927155 [TBL] [Abstract][Full Text] [Related]
20. A stereological study of substantia nigra in young and old rhesus monkeys. Pakkenberg H; Andersen BB; Burns RS; Pakkenberg B Brain Res; 1995 Sep; 693(1-2):201-6. PubMed ID: 8653409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]