BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30630080)

  • 1. Differential impact of reward and punishment on functional connectivity after skill learning.
    Steel A; Silson EH; Stagg CJ; Baker CI
    Neuroimage; 2019 Apr; 189():95-105. PubMed ID: 30630080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contextual interference enhances motor learning through increased resting brain connectivity during memory consolidation.
    Lin CJ; Yang HC; Knowlton BJ; Wu AD; Iacoboni M; Ye YL; Huang SL; Chiang MC
    Neuroimage; 2018 Nov; 181():1-15. PubMed ID: 29966717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of reward and punishment on skill learning depends on task demands.
    Steel A; Silson EH; Stagg CJ; Baker CI
    Sci Rep; 2016 Oct; 6():36056. PubMed ID: 27786302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.
    Gobel EW; Parrish TB; Reber PJ
    Neuroimage; 2011 Oct; 58(4):1150-7. PubMed ID: 21771663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Getting to grips with endoscopy - Learning endoscopic surgical skills induces bi-hemispheric plasticity of the grasping network.
    Karabanov AN; Irmen F; Madsen KH; Haagensen BN; Schulze S; Bisgaard T; Siebner HR
    Neuroimage; 2019 Apr; 189():32-44. PubMed ID: 30583066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-dependent modulation of motor network connectivity for skill acquisition, consolidation and interlimb transfer after motor practice.
    Veldman MP; Maurits NM; Mantini D; Hortobágyi T
    Clin Neurophysiol; 2021 Aug; 132(8):1790-1801. PubMed ID: 34130247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel alterations of functional connectivity during execution and imagination after motor imagery learning.
    Zhang H; Xu L; Zhang R; Hui M; Long Z; Zhao X; Yao L
    PLoS One; 2012; 7(5):e36052. PubMed ID: 22629308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural connectivity prior to whole-body sensorimotor skill learning associates with changes in resting state functional connectivity.
    Mizuguchi N; Maudrich T; Kenville R; Carius D; Maudrich D; Villringer A; Ragert P
    Neuroimage; 2019 Aug; 197():191-199. PubMed ID: 31029869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes occur in resting state network of motor system during 4 weeks of motor skill learning.
    Ma L; Narayana S; Robin DA; Fox PT; Xiong J
    Neuroimage; 2011 Sep; 58(1):226-33. PubMed ID: 21689765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of positive social comparative feedback on the resting state connectivity of dopaminergic neural pathways: A preliminary investigation.
    Lewis AF; Bohnenkamp R; Myers M; den Ouden DB; Fritz SL; Stewart JC
    Neurobiol Learn Mem; 2024 Jul; 212():107930. PubMed ID: 38692391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The time course of task-specific memory consolidation effects in resting state networks.
    Sami S; Robertson EM; Miall RC
    J Neurosci; 2014 Mar; 34(11):3982-92. PubMed ID: 24623776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting state connectivity immediately following learning correlates with subsequent sleep-dependent enhancement of motor task performance.
    Gregory MD; Agam Y; Selvadurai C; Nagy A; Vangel M; Tucker M; Robertson EM; Stickgold R; Manoach DS
    Neuroimage; 2014 Nov; 102 Pt 2(0 2):666-73. PubMed ID: 25173415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifts in connectivity during procedural learning after motor cortex stimulation: A combined transcranial magnetic stimulation/functional magnetic resonance imaging study.
    Steel A; Song S; Bageac D; Knutson KM; Keisler A; Saad ZS; Gotts SJ; Wassermann EM; Wilkinson L
    Cortex; 2016 Jan; 74():134-48. PubMed ID: 26673946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical re-evaluation of fMRI signatures of motor sequence learning.
    Berlot E; Popp NJ; Diedrichsen J
    Elife; 2020 May; 9():. PubMed ID: 32401193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-free characterization of brain functional networks for motor sequence learning using fMRI.
    Tamás Kincses Z; Johansen-Berg H; Tomassini V; Bosnell R; Matthews PM; Beckmann CF
    Neuroimage; 2008 Feb; 39(4):1950-8. PubMed ID: 18053746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromodulation of reinforced skill learning reveals the causal function of prefrontal cortex.
    Dayan E; Herszage J; Laor-Maayany R; Sharon H; Censor N
    Hum Brain Mapp; 2018 Dec; 39(12):4724-4732. PubMed ID: 30043536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural correlates of intermanual transfer.
    Dirren E; Bourgeois A; Klug J; Kleinschmidt A; van Assche M; Carrera E
    Neuroimage; 2021 Dec; 245():118657. PubMed ID: 34687859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online feedback enhances early consolidation of motor sequence learning and reverses recall deficit from transcranial stimulation of motor cortex.
    Wilkinson L; Steel A; Mooshagian E; Zimmermann T; Keisler A; Lewis JD; Wassermann EM
    Cortex; 2015 Oct; 71():134-47. PubMed ID: 26204232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning.
    Steele CJ; Penhune VB
    J Neurosci; 2010 Jun; 30(24):8332-41. PubMed ID: 20554884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroencephalographic connectivity measures predict learning of a motor sequencing task.
    Wu J; Knapp F; Cramer SC; Srinivasan R
    J Neurophysiol; 2018 Feb; 119(2):490-498. PubMed ID: 29093171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.