These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30630486)

  • 1. A classification framework for exploiting sparse multi-variate temporal features with application to adverse drug event detection in medical records.
    Bagattini F; Karlsson I; Rebane J; Papapetrou P
    BMC Med Inform Decis Mak; 2019 Jan; 19(1):7. PubMed ID: 30630486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning temporal weights of clinical events using variable importance.
    Zhao J; Henriksson A
    BMC Med Inform Decis Mak; 2016 Jul; 16 Suppl 2(Suppl 2):71. PubMed ID: 27459993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding.
    Wunnava S; Qin X; Kakar T; Sen C; Rundensteiner EA; Kong X
    Drug Saf; 2019 Jan; 42(1):113-122. PubMed ID: 30649736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Handling Temporality of Clinical Events for Drug Safety Surveillance.
    Zhao J; Henriksson A; Kvist M; Asker L; Boström H
    AMIA Annu Symp Proc; 2015; 2015():1371-80. PubMed ID: 26958278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A data-driven method to detect adverse drug events from prescription data.
    Zhan C; Roughead E; Liu L; Pratt N; Li J
    J Biomed Inform; 2018 Sep; 85():10-20. PubMed ID: 30016721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive modeling of structured electronic health records for adverse drug event detection.
    Zhao J; Henriksson A; Asker L; Boström H
    BMC Med Inform Decis Mak; 2015; 15 Suppl 4(Suppl 4):S1. PubMed ID: 26606038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying adverse drug event information in clinical notes with distributional semantic representations of context.
    Henriksson A; Kvist M; Dalianis H; Duneld M
    J Biomed Inform; 2015 Oct; 57():333-49. PubMed ID: 26291578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for systematic discovery of adverse drug events from clinical notes.
    Wang G; Jung K; Winnenburg R; Shah NH
    J Am Med Inform Assoc; 2015 Nov; 22(6):1196-204. PubMed ID: 26232442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Electronic Health Records to Identify Adverse Drug Events in Ambulatory Care: A Systematic Review.
    Feng C; Le D; McCoy AB
    Appl Clin Inform; 2019 Jan; 10(1):123-128. PubMed ID: 30786301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SSEL-ADE: A semi-supervised ensemble learning framework for extracting adverse drug events from social media.
    Liu J; Zhao S; Wang G
    Artif Intell Med; 2018 Jan; 84():34-49. PubMed ID: 29111222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning models to detect and predict patient safety events using electronic health records: A systematic review.
    Deimazar G; Sheikhtaheri A
    Int J Med Inform; 2023 Dec; 180():105246. PubMed ID: 37837710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Routine use of the "ADE scorecards", an application for automated ADE detection in a general hospital.
    Chazard E; Luyckx M; Beuscart JB; Ferret L; Beuscart R
    Stud Health Technol Inform; 2013; 192():308-12. PubMed ID: 23920566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation and evaluation of a multivariate abstraction-based, interval-based dynamic time-warping method as a similarity measure for longitudinal medical records.
    Lion M; Shahar Y
    J Biomed Inform; 2021 Nov; 123():103919. PubMed ID: 34628062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing adverse drug event detection in electronic health records using molecular structure similarity: application to pancreatitis.
    Vilar S; Harpaz R; Santana L; Uriarte E; Friedman C
    PLoS One; 2012; 7(7):e41471. PubMed ID: 22911794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries.
    Hong N; Wen A; Stone DJ; Tsuji S; Kingsbury PR; Rasmussen LV; Pacheco JA; Adekkanattu P; Wang F; Luo Y; Pathak J; Liu H; Jiang G
    J Biomed Inform; 2019 Nov; 99():103310. PubMed ID: 31622801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning.
    Munkhdalai T; Liu F; Yu H
    JMIR Public Health Surveill; 2018 Apr; 4(2):e29. PubMed ID: 29695376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining multi-item drug adverse effect associations in spontaneous reporting systems.
    Harpaz R; Chase HS; Friedman C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 9(Suppl 9):S7. PubMed ID: 21044365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Federated learning of predictive models from federated Electronic Health Records.
    Brisimi TS; Chen R; Mela T; Olshevsky A; Paschalidis IC; Shi W
    Int J Med Inform; 2018 Apr; 112():59-67. PubMed ID: 29500022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adverse drug effect mentions extraction method based on weighted online recurrent extreme learning machine.
    El-Allaly ED; Sarrouti M; En-Nahnahi N; Ouatik El Alaoui S
    Comput Methods Programs Biomed; 2019 Jul; 176():33-41. PubMed ID: 31200909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams.
    Eshleman R; Singh R
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):335. PubMed ID: 27766937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.