These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The effect of internucleosomal interaction on folding of the chromatin fiber. Stehr R; Kepper N; Rippe K; Wedemann G Biophys J; 2008 Oct; 95(8):3677-91. PubMed ID: 18658212 [TBL] [Abstract][Full Text] [Related]
6. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Grigoryev SA; Arya G; Correll S; Woodcock CL; Schlick T Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13317-22. PubMed ID: 19651606 [TBL] [Abstract][Full Text] [Related]
7. A critical role for linker DNA in higher-order folding of chromatin fibers. Brouwer T; Pham C; Kaczmarczyk A; de Voogd WJ; Botto M; Vizjak P; Mueller-Planitz F; van Noort J Nucleic Acids Res; 2021 Mar; 49(5):2537-2551. PubMed ID: 33589918 [TBL] [Abstract][Full Text] [Related]
8. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing. Blank TA; Becker PB J Mol Biol; 1996 Jul; 260(1):1-8. PubMed ID: 8676389 [TBL] [Abstract][Full Text] [Related]
9. Chromatin Higher-Order Folding: A Perspective with Linker DNA Angles. Grigoryev SA Biophys J; 2018 May; 114(10):2290-2297. PubMed ID: 29628212 [TBL] [Abstract][Full Text] [Related]
10. Nucleosome spacing and chromatin higher-order folding. Grigoryev SA Nucleus; 2012; 3(6):493-9. PubMed ID: 22990522 [TBL] [Abstract][Full Text] [Related]
11. Geometrical, conformational and topological restraints in regular nucleosome compaction in chromatin. Scipioni A; Turchetti G; Morosetti S; De Santis P Biophys Chem; 2010 May; 148(1-3):56-67. PubMed ID: 20236753 [TBL] [Abstract][Full Text] [Related]
12. Unraveling the multiplex folding of nucleosome chains in higher order chromatin. Grigoryev SA; Schubert M Essays Biochem; 2019 Apr; 63(1):109-121. PubMed ID: 31015386 [TBL] [Abstract][Full Text] [Related]
13. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Bednar J; Horowitz RA; Grigoryev SA; Carruthers LM; Hansen JC; Koster AJ; Woodcock CL Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14173-8. PubMed ID: 9826673 [TBL] [Abstract][Full Text] [Related]
14. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array. Woods DC; Rodríguez-Ropero F; Wereszczynski J J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509 [TBL] [Abstract][Full Text] [Related]
15. HMGN1 and 2 remodel core and linker histone tail domains within chromatin. Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435 [TBL] [Abstract][Full Text] [Related]
16. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes. Buning R; Kropff W; Martens K; van Noort J J Phys Condens Matter; 2015 Feb; 27(6):064103. PubMed ID: 25564102 [TBL] [Abstract][Full Text] [Related]
17. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Routh A; Sandin S; Rhodes D Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8872-7. PubMed ID: 18583476 [TBL] [Abstract][Full Text] [Related]
18. Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment. Perišić O; Schlick T J Phys Chem B; 2017 Aug; 121(33):7823-7832. PubMed ID: 28732449 [TBL] [Abstract][Full Text] [Related]
19. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Kruithof M; Chien FT; Routh A; Logie C; Rhodes D; van Noort J Nat Struct Mol Biol; 2009 May; 16(5):534-40. PubMed ID: 19377481 [TBL] [Abstract][Full Text] [Related]
20. EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure. Robinson PJ; Fairall L; Huynh VA; Rhodes D Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6506-11. PubMed ID: 16617109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]