BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30630954)

  • 1. Substitutions in the β subunits of sickle-cell hemoglobin improve oxidative stability and increase the delay time of sickle-cell fiber formation.
    Meng F; Kassa T; Strader MB; Soman J; Olson JS; Alayash AI
    J Biol Chem; 2019 Mar; 294(11):4145-4159. PubMed ID: 30630954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of α subunit substitutions on the oxidation of βCys93 and the stability of sickle cell hemoglobin.
    Hicks W; Meng F; Kassa T; Alayash AI
    Redox Rep; 2020 Dec; 25(1):95-103. PubMed ID: 33059548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Providence Mutation (βK82D) in Human Hemoglobin Substantially Reduces βCysteine 93 Oxidation and Oxidative Stress in Endothelial Cells.
    Jana S; Strader MB; Alayash AI
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sickle Cell Hemoglobin in the Ferryl State Promotes βCys-93 Oxidation and Mitochondrial Dysfunction in Epithelial Lung Cells (E10).
    Kassa T; Jana S; Strader MB; Meng F; Jia Y; Wilson MT; Alayash AI
    J Biol Chem; 2015 Nov; 290(46):27939-58. PubMed ID: 26396189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sickle Cell Hemoglobin with Mutation at αHis-50 Has Improved Solubility.
    Tam MF; Tam TC; Simplaceanu V; Ho NT; Zou M; Ho C
    J Biol Chem; 2015 Aug; 290(35):21762-72. PubMed ID: 26187468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolated Hb Providence β82Asn and β82Asp fractions are more stable than native HbA(0) under oxidative stress conditions.
    Abraham B; Hicks W; Jia Y; Baek JH; Miller JL; Alayash AI
    Biochemistry; 2011 Nov; 50(45):9752-66. PubMed ID: 21977904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic enhancement of polymerization of recombinant sickle hemoglobin mutants: implications for transgenic mouse model for sickle cell anemia.
    Li X; Mirza UA; Chait BT; Manning JM
    Blood; 1997 Dec; 90(11):4620-7. PubMed ID: 9373274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caffeic acid: an antioxidant with novel antisickling properties.
    Kassa T; Whalin JG; Richards MP; Alayash AI
    FEBS Open Bio; 2021 Dec; 11(12):3293-3303. PubMed ID: 34510823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting βCys93 in hemoglobin S with an antisickling agent possessing dual allosteric and antioxidant effects.
    Kassa T; Strader MB; Nakagawa A; Zapol WM; Alayash AI
    Metallomics; 2017 Sep; 9(9):1260-1270. PubMed ID: 28770911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced inhibition of polymerization of sickle cell hemoglobin in the presence of recombinant mutants of human fetal hemoglobin with substitutions at position 43 in the gamma-chain.
    Tam MF; Chen J; Tam TC; Tsai CH; Shen TJ; Simplaceanu V; Feinstein TN; Barrick D; Ho C
    Biochemistry; 2005 Sep; 44(36):12188-95. PubMed ID: 16142917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interspecies hybrid HbS: complete neutralization of Val6(beta)-dependent polymerization of human beta-chain by pig alpha-chains.
    Rao MJ; Malavalli A; Manjula BN; Kumar R; Prabhakaran M; Sun DP; Ho NT; Ho C; Nagel RL; Acharya AS
    J Mol Biol; 2000 Jul; 300(5):1389-406. PubMed ID: 10903876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Recombinant human hemoglobin with low oxygen affinity: additional effects of two mutations].
    Baudin V; Dumoulin A; Poyart C; Pagnier J
    Transfus Clin Biol; 1995; 2(6):463-7. PubMed ID: 8646342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antisickling Drugs Targeting βCys93 Reduce Iron Oxidation and Oxidative Changes in Sickle Cell Hemoglobin.
    Kassa T; Wood F; Strader MB; Alayash AI
    Front Physiol; 2019; 10():931. PubMed ID: 31396101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative pathways in the sickle cell and beyond.
    Alayash AI
    Blood Cells Mol Dis; 2018 May; 70():78-86. PubMed ID: 28554826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering tyrosine electron transfer pathways decreases oxidative toxicity in hemoglobin: implications for blood substitute design.
    Silkstone GG; Silkstone RS; Wilson MT; Simons M; Bülow L; Kallberg K; Ratanasopa K; Ronda L; Mozzarelli A; Reeder BJ; Cooper CE
    Biochem J; 2016 Oct; 473(19):3371-83. PubMed ID: 27470146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biochemical and biophysical characterization of recombinant mutants of fetal hemoglobin and their interaction with sickle cell hemoglobin.
    Larson SC; Fisher GW; Ho NT; Shen TJ; Ho C
    Biochemistry; 1999 Jul; 38(29):9549-55. PubMed ID: 10413533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of alpha 114 and beta 87 amino acid residues in the polymerization of hemoglobin S: implications for gene therapy.
    Ho C; Willis BF; Shen TJ; Dazhen NT; Sun DP; Tam MF; Suzuka SM; Fabry ME; Nagel RL
    J Mol Biol; 1996 Nov; 263(3):475-85. PubMed ID: 8918602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering oxidative stability in human hemoglobin based on the Hb providence (βK82D) mutation and genetic cross-linking.
    Strader MB; Bangle R; Parker Siburt CJ; Varnado CL; Soman J; Benitez Cardenas AS; Samuel PP; Singleton EW; Crumbliss AL; Olson JS; Alayash AI
    Biochem J; 2017 Dec; 474(24):4171-4192. PubMed ID: 29070524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemoglobin oxidation-dependent reactions promote interactions with band 3 and oxidative changes in sickle cell-derived microparticles.
    Jana S; Strader MB; Meng F; Hicks W; Kassa T; Tarandovskiy I; De Paoli S; Simak J; Heaven MR; Belcher JD; Vercellotti GM; Alayash AI
    JCI Insight; 2018 Nov; 3(21):. PubMed ID: 30385713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sickle Cell Hemoglobin.
    Mandal AK; Mitra A; Das R
    Subcell Biochem; 2020; 94():297-322. PubMed ID: 32189305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.