These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 30631051)

  • 1. Arctic amplification is caused by sea-ice loss under increasing CO
    Dai A; Luo D; Song M; Liu J
    Nat Commun; 2019 Jan; 10(1):121. PubMed ID: 30631051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission.
    Notz D; Stroeve J
    Science; 2016 Nov; 354(6313):747-750. PubMed ID: 27811286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin.
    Cai WJ; Chen L; Chen B; Gao Z; Lee SH; Chen J; Pierrot D; Sullivan K; Wang Y; Hu X; Huang WJ; Zhang Y; Xu S; Murata A; Grebmeier JM; Jones EP; Zhang H
    Science; 2010 Jul; 329(5991):556-9. PubMed ID: 20651119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of sea ice in the Arctic.
    Perovich DK; Richter-Menge JA
    Ann Rev Mar Sci; 2009; 1():417-41. PubMed ID: 21141043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observational determination of albedo decrease caused by vanishing Arctic sea ice.
    Pistone K; Eisenman I; Ramanathan V
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3322-6. PubMed ID: 24550469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplified Arctic warming by phytoplankton under greenhouse warming.
    Park JY; Kug JS; Bader J; Rolph R; Kwon M
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5921-6. PubMed ID: 25902494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.
    Amstrup SC; Deweaver ET; Douglas DC; Marcot BG; Durner GM; Bitz CM; Bailey DA
    Nature; 2010 Dec; 468(7326):955-8. PubMed ID: 21164484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The changing seasonal climate in the Arctic.
    Bintanja R; van der Linden EC
    Sci Rep; 2013; 3():1556. PubMed ID: 23532038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate supply and uptake in the Atlantic Arctic sea ice zone: seasonal cycle, mechanisms and drivers.
    Henley SF; Porter M; Hobbs L; Braun J; Guillaume-Castel R; Venables EJ; Dumont E; Cottier F
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190361. PubMed ID: 32862810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aviation, melting sea-ice and polar bears.
    Sonne C; Alstrup AKO; Dietz R; Ok YS; Ciesielski TM; Jenssen BM
    Environ Int; 2019 Dec; 133(Pt B):105279. PubMed ID: 31671313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate of the Arctic marine environment.
    Walsh JE
    Ecol Appl; 2008 Mar; 18(2 Suppl):S3-22. PubMed ID: 18494360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.
    Han D; Kang I; Ha HK; Kim HC; Kim OS; Lee BY; Cho JC; Hur HG; Lee YK
    PLoS One; 2014; 9(1):e86887. PubMed ID: 24497990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An estimated cost of lost climate regulation services caused by thawing of the Arctic cryosphere.
    Euskirchen ES; Goodstein ES; Huntington HP
    Ecol Appl; 2013 Dec; 23(8):1869-80. PubMed ID: 24555313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does climate change influence Arctic mercury?
    Stern GA; Macdonald RW; Outridge PM; Wilson S; Chételat J; Cole A; Hintelmann H; Loseto LL; Steffen A; Wang F; Zdanowicz C
    Sci Total Environ; 2012 Jan; 414():22-42. PubMed ID: 22104383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical mechanisms of Arctic amplification.
    Dethloff K; Handorf D; Jaiser R; Rinke A; Klinghammer P
    Ann N Y Acad Sci; 2019 Jan; 1436(1):184-194. PubMed ID: 29754421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere.
    Parmentier FW; Christensen TR; Rysgaard S; Bendtsen J; Glud RN; Else B; van Huissteden J; Sachs T; Vonk JE; Sejr MK
    Ambio; 2017 Feb; 46(Suppl 1):53-69. PubMed ID: 28116680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds.
    Amélineau F; Bonnet D; Heitz O; Mortreux V; Harding AMA; Karnovsky N; Walkusz W; Fort J; Grémillet D
    Environ Pollut; 2016 Dec; 219():1131-1139. PubMed ID: 27616650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructed changes in Arctic sea ice over the past 1,450 years.
    Kinnard C; Zdanowicz CM; Fisher DA; Isaksson E; de Vernal A; Thompson LG
    Nature; 2011 Nov; 479(7374):509-12. PubMed ID: 22113692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentrations and controls of dissolved inorganic carbon in Arctic summer sea ice and adjacent surface seawaters.
    Cai X; Zhuang Y; Wu Y; Lin H; Qi D
    Mar Environ Res; 2023 Sep; 190():106083. PubMed ID: 37422995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The central role of diminishing sea ice in recent Arctic temperature amplification.
    Screen JA; Simmonds I
    Nature; 2010 Apr; 464(7293):1334-7. PubMed ID: 20428168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.