These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 30631051)
41. Arctic Ocean annual high in [Formula: see text] could shift from winter to summer. Orr JC; Kwiatkowski L; Pörtner HO Nature; 2022 Oct; 610(7930):94-100. PubMed ID: 36198779 [TBL] [Abstract][Full Text] [Related]
42. Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping. Gascard JC; Riemann-Campe K; Gerdes R; Schyberg H; Randriamampianina R; Karcher M; Zhang J; Rafizadeh M Ambio; 2017 Dec; 46(Suppl 3):355-367. PubMed ID: 29080010 [TBL] [Abstract][Full Text] [Related]
43. Diversity and Composition of Pelagic Prokaryotic and Protist Communities in a Thin Arctic Sea-Ice Regime. de Sousa AGG; Tomasino MP; Duarte P; Fernández-Méndez M; Assmy P; Ribeiro H; Surkont J; Leite RB; Pereira-Leal JB; Torgo L; Magalhães C Microb Ecol; 2019 Aug; 78(2):388-408. PubMed ID: 30623212 [TBL] [Abstract][Full Text] [Related]
44. Annual cycle observations of aerosols capable of ice formation in central Arctic clouds. Creamean JM; Barry K; Hill TCJ; Hume C; DeMott PJ; Shupe MD; Dahlke S; Willmes S; Schmale J; Beck I; Hoppe CJM; Fong A; Chamberlain E; Bowman J; Scharien R; Persson O Nat Commun; 2022 Jun; 13(1):3537. PubMed ID: 35725737 [TBL] [Abstract][Full Text] [Related]
45. Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging. Grémillet D; Fort J; Amélineau F; Zakharova E; Le Bot T; Sala E; Gavrilo M Glob Chang Biol; 2015 Mar; 21(3):1116-23. PubMed ID: 25639886 [TBL] [Abstract][Full Text] [Related]
46. Enhanced Arctic Amplification Began at the Mid-Brunhes Event ~400,000 years ago. Cronin TM; Dwyer GS; Caverly EK; Farmer J; DeNinno LH; Rodriguez-Lazaro J; Gemery L Sci Rep; 2017 Nov; 7(1):14475. PubMed ID: 29101399 [TBL] [Abstract][Full Text] [Related]
47. The Arctic's sea ice cover: trends, variability, predictability, and comparisons to the Antarctic. Serreze MC; Meier WN Ann N Y Acad Sci; 2019 Jan; 1436(1):36-53. PubMed ID: 29806697 [TBL] [Abstract][Full Text] [Related]
48. Local snow melt and temperature-but not regional sea ice-explain variation in spring phenology in coastal Arctic tundra. Assmann JJ; Myers-Smith IH; Phillimore AB; Bjorkman AD; Ennos RE; Prevéy JS; Henry GHR; Schmidt NM; Hollister RD Glob Chang Biol; 2019 Jul; 25(7):2258-2274. PubMed ID: 30963662 [TBL] [Abstract][Full Text] [Related]
49. Impact of declining Arctic sea ice on winter snowfall. Liu J; Curry JA; Wang H; Song M; Horton RM Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4074-9. PubMed ID: 22371563 [TBL] [Abstract][Full Text] [Related]
50. Sea ice-associated decline in body condition leads to increased concentrations of lipophilic pollutants in polar bears (Ursus maritimus) from Svalbard, Norway. Tartu S; Bourgeon S; Aars J; Andersen M; Polder A; Thiemann GW; Welker JM; Routti H Sci Total Environ; 2017 Jan; 576():409-419. PubMed ID: 27794227 [TBL] [Abstract][Full Text] [Related]
51. Arctic sea-ice loss is projected to lead to more frequent strong El Niño events. Liu J; Song M; Zhu Z; Horton RM; Hu Y; Xie SP Nat Commun; 2022 Aug; 13(1):4952. PubMed ID: 35999238 [TBL] [Abstract][Full Text] [Related]
52. Chapter 1. Impacts of the oceans on climate change. Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974 [TBL] [Abstract][Full Text] [Related]
53. Effects of explicit atmospheric convection at high CO2. Arnold NP; Branson M; Burt MA; Abbot DS; Kuang Z; Randall DA; Tziperman E Proc Natl Acad Sci U S A; 2014 Jul; 111(30):10943-8. PubMed ID: 25024204 [TBL] [Abstract][Full Text] [Related]
54. The impact of Arctic sea ice loss on mid-Holocene climate. Park HS; Kim SJ; Seo KH; Stewart AL; Kim SY; Son SW Nat Commun; 2018 Nov; 9(1):4571. PubMed ID: 30385755 [TBL] [Abstract][Full Text] [Related]
55. Polar cod in jeopardy under the retreating Arctic sea ice. Huserbråten MBO; Eriksen E; Gjøsæter H; Vikebø F Commun Biol; 2019; 2():407. PubMed ID: 31728418 [TBL] [Abstract][Full Text] [Related]
56. Increased Land Use by Chukchi Sea Polar Bears in Relation to Changing Sea Ice Conditions. Rode KD; Wilson RR; Regehr EV; St Martin M; Douglas DC; Olson J PLoS One; 2015; 10(11):e0142213. PubMed ID: 26580809 [TBL] [Abstract][Full Text] [Related]
57. Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern. Liu Z; Risi C; Codron F; He X; Poulsen CJ; Wei Z; Chen D; Li S; Bowen GJ Nat Commun; 2021 Mar; 12(1):1519. PubMed ID: 33750823 [TBL] [Abstract][Full Text] [Related]
59. Ecological consequences of sea-ice decline. Post E; Bhatt US; Bitz CM; Brodie JF; Fulton TL; Hebblewhite M; Kerby J; Kutz SJ; Stirling I; Walker DA Science; 2013 Aug; 341(6145):519-24. PubMed ID: 23908231 [TBL] [Abstract][Full Text] [Related]
60. Arctic sea ice a major determinant in Mandt's black guillemot movement and distribution during non-breeding season. Divoky GJ; Douglas DC; Stenhouse IJ Biol Lett; 2016 Sep; 12(9):. PubMed ID: 27601723 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]