These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30631058)

  • 1. Bifurcation-based embodied logic and autonomous actuation.
    Jiang Y; Korpas LM; Raney JR
    Nat Commun; 2019 Jan; 10(1):128. PubMed ID: 30631058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modular strategy for distributed, embodied control of electronics-free soft robots.
    He Q; Yin R; Hua Y; Jiao W; Mo C; Shu H; Raney JR
    Sci Adv; 2023 Jul; 9(27):eade9247. PubMed ID: 37418520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary Origami Inspired Fabrication of Complex 3D Hydrogel Constructs.
    Li M; Yang Q; Liu H; Qiu M; Lu TJ; Xu F
    Small; 2016 Sep; 12(33):4492-500. PubMed ID: 27418038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronically programmable, reversible shape change in two- and three-dimensional hydrogel structures.
    Yu C; Duan Z; Yuan P; Li Y; Su Y; Zhang X; Pan Y; Dai LL; Nuzzo RG; Huang Y; Jiang H; Rogers JA
    Adv Mater; 2013 Mar; 25(11):1541-6. PubMed ID: 23255239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Folded Gripper-Like Architectures from Stimuli-Responsive Bilayers.
    Abdullah AM; Li X; Braun PV; Rogers JA; Hsia KJ
    Adv Mater; 2018 Aug; 30(31):e1801669. PubMed ID: 29921009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
    Li T; Li Y; Zhang T
    Acc Chem Res; 2019 Feb; 52(2):288-296. PubMed ID: 30653299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multitemperature Responsive Self-Folding Soft Biomimetic Structures.
    Kobayashi K; Oh SH; Yoon C; Gracias DH
    Macromol Rapid Commun; 2018 Feb; 39(4):. PubMed ID: 29250859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic scaffolds with three-dimensional undulated microtopographies.
    Yu JZ; Korkmaz E; Berg MI; LeDuc PR; Ozdoganlar OB
    Biomaterials; 2017 Jun; 128():109-120. PubMed ID: 28325683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired Synthesis of CaCO3 Superstructures through a Novel Hydrogel Composite Membranes Mineralization Platform: A Comprehensive View.
    Di Profio G; Salehi SM; Caliandro R; Guccione P; Nico G; Curcio E; Fontananova E
    Adv Mater; 2016 Jan; 28(4):610-6. PubMed ID: 26609641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH and Thermo Dual-Responsive Fluorescent Hydrogel Actuator.
    Wu BY; Le XX; Jian YK; Lu W; Yang ZY; Zheng ZK; Théato P; Zhang JW; Zhang A; Chen T
    Macromol Rapid Commun; 2019 Feb; 40(4):e1800648. PubMed ID: 30485580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Hydrogel Template Strategy in Ocular Drug Delivery.
    Shin CS; Marcano DC; Park K; Acharya G
    Methods Mol Biol; 2017; 1570():279-285. PubMed ID: 28238144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.
    Ng WL; Goh MH; Yeong WY; Naing MW
    Biomater Sci; 2018 Feb; 6(3):562-574. PubMed ID: 29383354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired materials that self-shape through programmed microstructures.
    Studart AR; Erb RM
    Soft Matter; 2014 Mar; 10(9):1284-94. PubMed ID: 24651249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-shaping composites with programmable bioinspired microstructures.
    Erb RM; Sander JS; Grisch R; Studart AR
    Nat Commun; 2013; 4():1712. PubMed ID: 23591879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems.
    Rhee M; Burns MA
    Lab Chip; 2009 Nov; 9(21):3131-43. PubMed ID: 19823730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Stimuli-Responsive Materials for Soft Actuators.
    Wang Z; Chen Y; Ma Y; Wang J
    Biomimetics (Basel); 2024 Feb; 9(3):. PubMed ID: 38534813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-scale soft grippers with environmentally responsive logic gates.
    Zhang X; Wu Y; Li Y; Jiang H; Yang Q; Wang Z; Liu J; Wang Y; Fan X; Kong J
    Mater Horiz; 2022 May; 9(5):1431-1439. PubMed ID: 35380150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.