BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30631105)

  • 1. A new recombineering system for precise genome-editing in Shewanella oneidensis strain MR-1 using single-stranded oligonucleotides.
    Corts AD; Thomason LC; Gill RT; Gralnick JA
    Sci Rep; 2019 Jan; 9(1):39. PubMed ID: 30631105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and Precise Genome Editing in
    Corts AD; Thomason LC; Gill RT; Gralnick JA
    ACS Synth Biol; 2019 Aug; 8(8):1877-1889. PubMed ID: 31277550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

  • 4. CRISPR/Cas9-mediated genome editing of Shewanella oneidensis MR-1 using a broad host-range pBBR1-based plasmid.
    Suzuki Y; Kouzuma A; Watanabe K
    J Gen Appl Microbiol; 2020 Apr; 66(1):41-45. PubMed ID: 31447475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing a base-editing system to expand the carbon source utilization spectra of Shewanella oneidensis MR-1 for enhanced pollutant degradation.
    Cheng L; Min D; He RL; Cheng ZH; Liu DF; Yu HQ
    Biotechnol Bioeng; 2020 Aug; 117(8):2389-2400. PubMed ID: 32356906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Editing in Staphylococcus aureus by Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection.
    Penewit K; Salipante SJ
    Methods Mol Biol; 2020; 2050():127-143. PubMed ID: 31468487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.
    Cao Y; Li X; Li F; Song H
    ACS Synth Biol; 2017 Sep; 6(9):1679-1690. PubMed ID: 28616968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Editing by CRISPR/Cas12 Recognizing AT-Rich PAMs in
    Chen Y; Cheng M; Feng X; Niu X; Song H; Cao Y
    ACS Synth Biol; 2022 Sep; 11(9):2947-2955. PubMed ID: 36048424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Enhancement of Extracellular Electron Transfer in
    Lin WQ; Cheng ZH; Wu QZ; Liu JQ; Liu DF; Sheng GP
    ACS Synth Biol; 2024 Jun; 13(6):1941-1951. PubMed ID: 38780992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombineering in Non-Model Bacteria.
    Corts A; Thomason LC; Costantino N; Court DL
    Curr Protoc; 2022 Dec; 2(12):e605. PubMed ID: 36546891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Whole Genome-Scale Base Editing Toolbox to Promote Efficiency of Extracellular Electron Transfer in Shewanella oneidensis MR-1.
    Chen Y; Fang L; Ying X; Cheng M; Wang L; Sun P; Zhang Z; Shi L; Cao Y; Song H
    Adv Biol (Weinh); 2022 Mar; 6(3):e2101296. PubMed ID: 35182055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 13. Rapid oligonucleotide-based recombineering of the chromosome of Salmonella enterica.
    Gerlach RG; Jäckel D; Hölzer SU; Hensel M
    Appl Environ Microbiol; 2009 Mar; 75(6):1575-80. PubMed ID: 19151186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing a PAM-Flexible CRISPR-Mediated Dual-Deaminase Base Editor to Regulate Extracellular Electron Transport in
    Wang T; Zhang J; Wei L; Zhao D; Bi C; Liu Q; Xu N; Liu J
    ACS Synth Biol; 2023 Jun; 12(6):1727-1738. PubMed ID: 37212667
    [No Abstract]   [Full Text] [Related]  

  • 15. Improving the efficiency of plasmid transformation in Shewanella oneidensis MR-1 by removing ClaI restriction site.
    Rachkevych N; Sybirna K; Boyko S; Boretsky Y; Sibirny A
    J Microbiol Methods; 2014 Apr; 99():35-7. PubMed ID: 24462975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a Native Inducible Expression System in Shewanella oneidensis to Control Extracellular Electron Transfer.
    West EA; Jain A; Gralnick JA
    ACS Synth Biol; 2017 Sep; 6(9):1627-1634. PubMed ID: 28562022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor.
    Kane AL; Brutinel ED; Joo H; Maysonet R; VanDrisse CM; Kotloski NJ; Gralnick JA
    J Bacteriol; 2016 Apr; 198(8):1337-46. PubMed ID: 26883823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ORBIT: a New Paradigm for Genetic Engineering of Mycobacterial Chromosomes.
    Murphy KC; Nelson SJ; Nambi S; Papavinasasundaram K; Baer CE; Sassetti CM
    mBio; 2018 Dec; 9(6):. PubMed ID: 30538179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.
    Barchinger SE; Pirbadian S; Sambles C; Baker CS; Leung KM; Burroughs NJ; El-Naggar MY; Golbeck JH
    Appl Environ Microbiol; 2016 Sep; 82(17):5428-43. PubMed ID: 27342561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.