BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 30631896)

  • 1. The homeobox gene MaH1 governs microcycle conidiation for increased conidial yield by mediating transcription of conidiation pattern shift-related genes in Metarhizium acridum.
    Gao P; Li M; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2251-2262. PubMed ID: 30631896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transmembrane protein MaSho1 negatively regulates conidial yield by shifting the conidiation pattern in Metarhizium acridum.
    Zhao T; Wen Z; Xia Y; Jin K
    Appl Microbiol Biotechnol; 2020 May; 104(9):4005-4015. PubMed ID: 32170386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MaSln1, a Conserved Histidine Protein Kinase, Contributes to Conidiation Pattern Shift Independent of the MAPK Pathway in
    Wen Z; Xia Y; Jin K
    Microbiol Spectr; 2022 Apr; 10(2):e0205121. PubMed ID: 35343772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The protein phosphatase gene MaPpt1 acts as a programmer of microcycle conidiation and a negative regulator of UV-B tolerance in Metarhizium acridum.
    Zhang J; Wang Z; Keyhani NO; Peng G; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1351-1362. PubMed ID: 30610282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients.
    Wang Z; Jin K; Xia Y
    BMC Genomics; 2016 Aug; 17():586. PubMed ID: 27506833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dipeptidase PEPDA Is Required for the Conidiation Pattern Shift in Metarhizium acridum.
    Li J; Su X; Cao Y; Xia Y
    Appl Environ Microbiol; 2021 Sep; 87(19):e0090821. PubMed ID: 34288712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription Factor
    Song D; Cao Y; Xia Y
    J Fungi (Basel); 2021 Oct; 7(10):. PubMed ID: 34682261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MaNCP1, a C2H2 Zinc Finger Protein, Governs the Conidiation Pattern Shift through Regulating the Reductive Pathway for Nitric Oxide Synthesis in the Filamentous Fungus Metarhizium
    Li C; Xu D; Hu M; Zhang Q; Xia Y; Jin K
    Microbiol Spectr; 2022 Jun; 10(3):e0053822. PubMed ID: 35536030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum.
    Wei Q; Du Y; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MaNsdD regulates conidiation negatively by inhibiting the AbaA expression required for normal conidiation in Metarhizium acridum.
    Song D; Cao Y; Xia Y
    Environ Microbiol; 2022 Jul; 24(7):2951-2961. PubMed ID: 35384250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The
    Song D; Shi Y; Ji H; Xia Y; Peng G
    Front Microbiol; 2019; 10():1946. PubMed ID: 31497008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MaCts1, an Endochitinase, Is Involved in Conidial Germination, Conidial Yield, Stress Tolerances and Microcycle Conidiation in
    Zou Y; Li C; Wang S; Xia Y; Jin K
    Biology (Basel); 2022 Nov; 11(12):. PubMed ID: 36552240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mmc, a gene involved in microcycle conidiation of the entomopathogenic fungus Metarhizium anisopliae.
    Liu J; Cao Y; Xia Y
    J Invertebr Pathol; 2010 Oct; 105(2):132-8. PubMed ID: 20546749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence.
    Zhang J; Jiang H; Du Y; Keyhani NO; Xia Y; Jin K
    PLoS Pathog; 2019 Aug; 15(8):e1007964. PubMed ID: 31461507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MaOpy2, a Transmembrane Protein, Is Involved in Stress Tolerances and Pathogenicity and Negatively Regulates Conidial Yield by Shifting the Conidiation Pattern in
    Wen Z; Fan Y; Xia Y; Jin K
    J Fungi (Basel); 2022 May; 8(6):. PubMed ID: 35736070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phosphatase gene MaCdc14 negatively regulates UV-B tolerance by mediating the transcription of melanin synthesis-related genes and contributes to conidiation in Metarhizium acridum.
    Gao P; Jin K; Xia Y
    Curr Genet; 2020 Feb; 66(1):141-153. PubMed ID: 31256233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetracarboxylic acid transporter regulates growth, conidiation, and carbon utilization in Metarhizium acridum.
    Luo Y; Yan X; Xia Y; Cao Y
    Appl Microbiol Biotechnol; 2023 May; 107(9):2969-2982. PubMed ID: 36941435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of genes preferentially expressed during microcycle conidiation of Metarhizium anisopliae using suppression subtractive hybridization.
    Zhang S; Xia Y
    FEMS Microbiol Lett; 2008 Sep; 286(1):71-7. PubMed ID: 18625022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The polyubiquitin gene
    Wang Z; Zhu H; Cheng Y; Jiang Y; Li Y; Huang B
    Genes (Basel); 2019 May; 10(6):. PubMed ID: 31146457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum.
    Du Y; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5611-5623. PubMed ID: 29713793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.